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We investigate superfluid flow around an airfoil accelerated to a finite velocity from rest. Using
simulations of the Gross–Pitaevskii equation we find striking similarities to viscous flows: from
production of starting vortices to convergence of airfoil circulation onto a quantized version of the
Kutta-Joukowski circulation. We predict the number of quantized vortices nucleated by a given foil
via a phenomenological argument. We further find stall-like behavior governed by airfoil speed, not
angle of attack, as in classical flows. Finally we analyze the lift and drag acting on the airfoil.

The development of flow around an airfoil, see sketch
in Figure 1(a), is a textbook problem in fluid mechanics
[1–3]. Describing this fundamental process has practical
relevance since it provides a route to understanding the
controlled production and release of vorticity from asym-
metric structures. In viscous weakly compressible fluids,
in the subsonic regime, this release occurs through a sub-
tle interplay of inviscid and viscous dynamics.

To address the inviscid, incompressible and two-
dimensional dynamics, one can use the celebrated confor-
mal Joukowski transformation to relate the flow around
an airfoil to the simpler flow past a cylinder. This makes
it possible to readily derive a family of allowed flows,
characterized by the value of the circulation Γ around
the airfoil. All but one of these flows feature a singu-
larity in the velocity at the trailing edge. To avoid this
singularity, the Kutta–Joukowski condition prescribes a
circulation, ΓKJ = −πU∞L sin(α), where L is the airfoil
chord, U∞ the speed and α the angle of attack. It then
follows that the airfoil experiences a lift force per unit
of wingspan given by −ρU∞ΓKJ and will not experience
any drag force.

A major issue with this inviscid theory is that the cir-
culation ΓKJ is prescribed by hand. Replacing the ideal
fluid with an incompressible but viscous fluid and enforc-
ing the no-slip boundary condition gives rise to a bound-
ary layer where the velocity interpolates from zero, on
the surface of the airfoil, to the potential velocity out-
side [1]. Far from the boundary layer, the flow remains
similar to the inviscid case. As the trailing edge is ap-
proached, the high speeds create a pressure gradient that
pulls the boundary layer off the airfoil and into a starting
vortex, generating a circulation ΓKJ around the airfoil
(see Fig. 1(a)). Because the airfoil acquires the same cir-
culation as in the ideal case, its lift remains unchanged,
though the airfoil experiences a nonzero drag due to vis-
cosity [1].

In this Letter we address the physics of flow past an air-
foil in a superfluid. In particular, we ask whether (i) there
exists a mechanism allowing for the generation of a circu-
lation; if so, (ii) whether the Kutta–Joukowski condition

FIG. 1. Generation of circulation: (a) A cartoon showing the
starting vortex produced in a viscous fluid. (b) The phase
field around the airfoil potential. By counting phase jumps
around the airfoil the value of the circulation can be obtained.
A quantized vortex is visible behind the airfoil’s trailing edge.
(c) Left hand - the density field in the full computational
box. The density is rescaled by the superfluid bulk density,
length scales are expressed in units of ξ, quantized vortices
are shown as red dots. A closer view of airfoil is shown on the
right. Relevant airfoil parameters are labeled and the vortex
is circled in red.

holds and finally, (iii) whether the airfoil experiences lift
and/or drag. In order to answer these questions we com-
bine an analytical approach with numerical simulations.
As a model for the superfluid, we consider the Gross–
Pitaevskii equation (GPE) which has been successfully
used to reproduce aspects of both inviscid and viscous
flow, including: the shedding of vortices from a disk [4–
7], an ellipse [8, 9], a sphere [10] and a cylinder [8, 11], the
formation of Von Kármán vortex sheets [5, 12], the emer-
gence of a superfluid boundary layer [13], the dynamics
and decay of vortex loops and knots [14, 15], and the
appearance of classical-like turbulent cascades [16, 17].
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FIG. 2. Vortex emission: (a) Vortices nucleated at the tail and top of a Joukowski airfoil having α = 15◦, λ̃ = 0.1. Here the

width of the foil scales like λ̃L (see SI). The computational box size is 1024ξ × 1024ξ. Tail number reflected by color, top
nucleation by octagon mark. (b) Top three frames are snapshots of the density field for U∞ = 0.260c and L = 325ξ; here
ntail = 2. Bottom frame has U∞ = 0.345c and L = 200ξ. This foil nucleates thrice from tail before nucleating uncontrollably
from top; right shows closer view of top vortices.

The two-dimensional GPE is:
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where ψ = ψ(x, y, t) is the wave-function of the super-
fluid, ~ is the reduced Planck’s constant, g is the effective
two-dimensional two-body coupling between the bosons
of mass m and V is an external potential. Relevant bulk
quantities are the speed of sound c =
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fluid number density at infinity. The healing length is the
length-scale for the superfluid to recover its bulk density
value away from an obstacle; the speed of sound is the
speed of density/phase waves of scales larger than ξ.

To understand the superfluid’s dynamics in terms of
hydrodynamic variables, we make use of the Madelung
transformation ψ =

√
ρeiφ. This recasts the GPE into

hydrodynamical equations for the conservation of mass:
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where the density and the velocity of the superfluid are
ρ = |ψ|2 and u = (~/m)∇φ, respectively. These equa-
tions are equivalent to the barotropic Euler equations for
an ideal fluid, with the exception of the presence of the
quantum pressure term (the last in eq. (2)), negligible at
scales larger than ξ. Circulation around a path C is given
by Γ =

∮
C
u · dl = ~∆φ/m, where ∆φ is the increment

in φ around C: ∆φ is quantized in units of 2π and so is
the circulation, in units κ = h/m. Quantized vortices are
defined as those points for which the density is zero and
the phase winds by 2π around them. For example, a vor-
tex can be seen in the phase field in Fig. 1(b); the same

vortex also appears circled in red in the density field of
Fig. 1(c).

To mimic the motion of an airfoil we add a poten-
tial V = V [x(t), y] moving with velocity ẋ(t) along the
x direction. Within the airfoil shape, the potential has
a constant value fifty times higher than the superfluid
chemical potential µ = gρ∞, and decays to zero within
a healing length outside. At the beginning of each simu-
lation the potential is accelerated up to a final velocity,
U∞ which is then kept constant. See SI (Supplementary
Information) for details of the numerical scheme.

Soon after the airfoil is set into motion, a vortex is
nucleated from the trailing edge, much like the starting
vortex emitted in classical fluids. Our typical airfoil nu-
cleates more than once; the bottom of Fig. 2(a) displays
an example where three vortices are nucleated from its
trailing edge. The number of vortices emitted depends in
general on the airfoil’s terminal velocity U∞ and length
L, as shown in Fig. 2(b). While most of the simulated air-
foils reach a steady state post-nucleation, in some cases,
highlighted with octagons in Fig. 2(b), the airfoil begins
nucleating from its top after nucleating from the trailing
edge. Once begun, nucleation from the top continues for
the length of the simulation in a manner reminiscent of
the stalling behaviour of a classical airfoil flow.

These results suggest that, just as for real fluids, an air-
foil in a superfluid builds circulation by vortex emission
from its trailing edge. A natural candidate for the mecha-
nism underlying vortex emission is the onset of compress-
ible effects at the tail of the foil [4, 7, 18]. To estimate
this we consider an airfoil moving with constant termi-
nal velocity U∞. At length scales larger than the healing
length, quantum pressure is negligible and the problem
simplifies to a classical inviscid compressible fluid one.
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The usual condition of compressibility is that relative
density variations must be larger than relative speed vari-
ations: |∇ρ|/ρ > |∇ ·u|/u [3]. In the steady flow and ne-
glecting the quantum pressure, eq. (2) is nothing but the
classical Bernoulli equation; ρ(u) = ρ∞+m(U2

∞−u2)/2g,
where ρ∞ is the far field density and U∞ is the far field
velocity in the foil’s frame. Plugging ρ(u) into the com-
pressibility condition, one obtains that compressibility
effects arise when [19]:

3

2

u2

c2
− 1

2

U2
∞
c2
− 1 > 0, (3)

i.e. when the local flow speed is greater than the local
speed of sound. In classical fluids, a dissipative shock
is formed where supersonic flow occurs. On the con-
trary, reaching the compressibility condition in numer-
ous superfluid models leads to the shedding of vortices
[7, 20, 21]. We use this phenomenological criterion to
predict the number of vortices that will nucleate.

We proceed by approximating the velocity of the su-
perfluid u around the foil by the velocity of an ideal fluid,
uideal, around a Joukowski foil of length L, terminal ve-
locity U∞, angle of attack α, with a circulation Γ. See the
SI for a comparison between this approximation and the
simulated flow field. For a circulation Γ 6= ΓKJ , the ideal
flow speed |uideal| increases sharply, eventually diverging
as the sharp tail is approached. We expect this diver-
gence to be cut-off by quantum pressure effects arising
in the healing layer of size ξ. Following [22], we evaluate
uideal at a distance Aξ, where A is a factor of order unity,
and predict vortex nucleation whenever the velocity ex-
ceeds the compressibility criterion of eq. (3). As vortices
are nucleated, the value of Γ increments accordingly by
κ. As Γ approaches ΓKJ the speeds at the tail decrease
and nucleation from the tail ends when enough vortices
have been emitted to reduce speeds at the tail below the
compressibility condition in eq. (3). We stress that, un-
like periodic nucleation of oppositely signed vortices from
symmetric obstacles as in [4, 6, 7, 10, 19, 23], all emitted
vortices have the same sign. Figure 3(a) shows excellent
agreement between our simulation data and this predic-
tion for a value A ∼ 0.55, close to the value 0.57 found
by Rica et al [22] for a sharp corner.

As tail nucleation decreases the speed at the tail, the
speed will increase over the top of the foil. Once an airfoil
has finished nucleating from its tail, if ideal flow speeds at
a distance of Aξ from the top are large enough to satisfy
(3), then we predict the airfoil will stall by continuously
emitting vortices from the top. The observed stall-like
behavior is marked by octagons in Figure 3(a); its predic-
tion is represented by the boundary of the colored area.
This marks a radical difference between classical and su-
perfluid flight: stalling in the superfluid is driven by the
flow speed at the top of the foil. In viscous flow stalling
is primarily a function of α. See Figure 4 [24].

Returning to tail nucleation, we make our prediction of

FIG. 3. Nucleation predictions: (a) Plot of tail and top nu-
cleation numbers in U∞ − L parameter space for α = 15◦.
Predictions are stripes in background, white area signifies pre-
dicted top nucleation. All predictions used a cut-off distance
of A = 0.55ξ from the foil. Simulation data is circled in white.
(b) Values of ∆n2 calculated for each simulation in (a) with
their average plotted vs. L/ξ. Errorbars are standard devia-
tion of the mean for the U∞/c values in (a).

FIG. 4. Viscous vs. superfluid flight/stall: (a) Flight of foil in
a viscous fluid at a low angle of attack. (b) Stall at high angle
of attack. (c) Stall in a superfluid at low angle of attack. (d)
Flight at high angle of attack.
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nucleation number analytic by appealing to a Taylor ex-
pansion of uideal at small distance from the tail. Solving
the implicit equation (3) for Γ = nκ, reveals that

(ΓKJ/κ− n)2 ≈ C(α)L/(3ξ) (4)

to first order [25] (See SI for details). Here C is a con-
stant of order one whose value depends on the angle of
attack α. If we define nKJ ≡ ΓKJ/κ to be the number of
vortices the foil would nucleate if it acquired a classical
circulation, we obtain ∆n2 ≡ (nKJ − n)2 = C(α)L/3ξ.
We verify this linear relationship by plotting ∆n2 vs. L/ξ
for our simulations, and find excellent agreement shown
in Figure 3(b).

Having understood the vortex nucleation, we turn our
attention to the force experienced during this process,
namely the lift and drag. The similarity of classical and
superfluid vortex nucleation leads us to suspect that an
airfoil’s lift in a superfluid will be similar to that in a
classical fluid, and thus that the Kutta–Joukowski Lift
Theorem will nearly hold in a superfluid. To calculate
the kth component of the force exerted by the superfluid
on the airfoil one can integrate the stress-energy tensor

Tjk = mρujuk +
1

2
δjkgρ

2 − ~2

4m
ρ∂j∂k ln ρ (5)

around any path S enclosing the airfoil [7]. The results
of this calculation for a particular airfoil’s simulation are
displayed in Fig. 5. We rescale the computed forces by
mρ∞U∞κ, which corresponds to a quantum of lift: the
ideal lift provided by a quantum of circulation.

The computed lift and drag are clearly not quantized.
We attribute this to transient effects, in particular to the
build-up of a dipolar density variation above and below
the foil, as can be seen in the inset of Fig. 5(a). As
discussed in the SI the density dipole, and the emitted
and reflected density wave, lead to contributions to the
lift and drag of the same order of magnitude as the two
spikes seen in Fig. 5(a). To remove these effects we pro-
ceed as follows:far from the foil where speeds are low, we
expect that the compressible piece, uC , of the velocity
field will contain only density/sound waves. As detailed
in the SI, the incompressible component of the velocity
field uI ≡ u−uC , is simply the sum of the ideal velocity
field around the foil, uideal and the velocity fields from
the emitted vortices. Replacing u with uI and using the
density field prescribed by the steady Bernoulli equation,
we recalculate the lift and drag and plot it in Fig. 5(b).
Since this calculation differs from that of lift and drag
on an airfoil in ideal fluid only in that we allowed the
density ρ(uI) to vary in space, it is not surprising that
the lift is now quantized and the drag is nearly zero.

In conclusion we analysed the mechanisms responsi-
ble for vortex nucleation from an airfoil and its conse-
quent acquired lift in a two-dimensional superfluid. On
the one hand, we find results reminiscent of the classi-
cal theory of airfoils; with the emission of vortices at

FIG. 5. Evolution of lift and drag: (a) Non-dimensional lift
(dotted line) and drag (solid line) experienced by the airfoil
throughout simulation with U∞ = 0.29c, L = 325ξ, α = 15.0◦,
and λ̃ = 0.1. Inset shows an exaggerated density field around
the airfoil. Included are the integration contours for comput-
ing the force. (b) Non-dimensional lift (dotted line) and drag
(solid line) experienced by the airfoil using uI and ρ(uI). A
grid is overlaid to demonstrate the quantization of the lift,
the steps coincide with vortex nucleation. Lift and drag were
not computed on a contour if a vortex was within 8ξ.

the trailing edge governed by the elimination of the sin-
gularity predicted by inviscid flow. On the other hand,
a marked departure from classical flow is found in the
stalling behavior. Accelerated hydrofoils and wings have
recently been used to create vortices of arbitrary shape
in classical fluids [26, 27], a technique which might gen-
eralize to superfluids, offering a potentially powerful new
procedure in superfluid manipulation, vortex generation,
and observation of quantized lift – a measurement origi-
nally attempted in 4He by Craig & Pellam [28] to demon-
strate the quantization of circulation, later detected by
Vinen using a different setup [29]. Among the vari-
ous superfluid experimental realizations, some have re-
cently started to address questions on vortex nucleation
and manipulation using moving obstacles including cold
atomic gases [21, 23, 30–33] and quantum fluids of light
[34, 35]. Details of each experimental realization will
differ: 3d effects need to be considered for non quasi-
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two-dimensional BECs, the rotons’ emission instead of
vortex shedding might be important in 4He, and out-of-
equilibrium exciton-polariton systems will require mod-
elling to consider intrinsic forcing and damping terms.
The time is right for superfluid flight!
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