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A new type of dynamics called Laminar Chaos was recently discovered through a theoretical
analysis of a scalar delay differential equation with time-varying delay. Laminar Chaos is a low-
dimensional dynamics characterized by laminar phases of nearly constant intensity with periodic
durations and a chaotic variation of the intensity from one laminar phase to the next laminar phase.
This is in stark contrast to the typically observed higher-dimensional Turbulent Chaos, which is
characterized by strong fluctuations. In this paper we provide the first experimental observation of
Laminar Chaos by studying an opto-electronic feedback loop with time-varying delay. The noise
inherent in the experiment requires the development of a nonlinear Langevin equation with variable
delay. The results show that Laminar Chaos can be observed in higher-order systems, and that the
phenomenon is robust to noise and a digital implementation of the variable time-delay.

Time delays, typically due to the finite propagation
speed of signals, can be found in models of lasers [1–3],
control systems [4, 5], population dynamics [6], immune
diseases [7], and networks of neurons [8, 9]. Systems with
time delays are known to display a wide variety of inter-
esting dynamical behaviors, including square waves [10]
and multistability [11, 12], and have even been shown
to exhibit spatio-temporal-like behaviors such as phase
transitions [13], coarsening [14], and chimera states in
ring networks [15] and arbitrary networks [16, 17] when
viewed in the space-time representation [18]. Time delay
systems have long been known for their ability to display
high-dimensional chaotic behavior [19]. Recent develop-
ments in the field of time delay systems can be found in
the theme issue [20].

Most previous studies of time-delay systems have con-
sidered systems with a fixed time delay. Less understood
is the case in which the duration of the delay itself is
allowed to vary in time. This possibly more realistic
case can lead to an increase in dynamical complexity
[21, 22], or alternatively a stabilization of the system
[23, 24]. Only a few experiments (notable ones include
the electronic circuits described in Refs. [25] and [26])
have been performed with tunable time-varying delays.
Here, we develop the first opto-electronic oscillator with
time-varying delay.

In 2018 an entirely new type of chaos, Laminar Chaos,
was discovered in a scalar time-delay system with a vary-
ing delay [27]. In this Letter, we report an opto-electronic
oscillator that displays Laminar Chaos, the first obser-
vation of Laminar Chaos in an experiment. Our re-
sults demonstrate that Laminar Chaos can be observed
in higher-order systems with a digital implementation of
the variable delay. Further, we study the robustness of
Laminar Chaos to noise, both in the experiment and in
a nonlinear Langevin equation with variable delay.

In Ref. [27] Laminar Chaos was found in systems de-
scribed by a scalar delay differential equation with time-
varying delay τ(t)

1

T
ż(t) + z(t) = µF (z(t− τ(t))), (1)

Equation (1) describes a first-order (one-pole) low-pass
filter with nonlinear time-delayed feedback in which the
duration of the delay varies in time. In Eq. 1, z is a
generic dependent variable, F (z) is a generic nonlinear-
ity, T/2π is the cutoff frequency of the low-pass filter,
and τ(t) is the time-varying time delay. In Eq. 1, time is
dimensionless. Equation (1) contains the essential ingre-
dients for Laminar Chaos: a feedback loop with a band-
limiting element (low pass filter), a nonlinearity F (z),
and a time-varying time delay τ(t). A block diagram de-
picting such a system is given in Fig. S1 (Supplemental
Material).
Laminar Chaos is characterized by nearly constant

laminar phases with periodic durations and burst-like
transitions between them. The intensity levels zn of the
laminar phases vary chaotically and are connected by the
one dimensional map zn+1 = F (zn). The durations of
the phases are determined by the so-called access map
tn+1 = R(tn) ≡ tn − τ(tn) [27]. In other words, a system
that is well-described by a continuous-time delay differen-
tial equation displays essentially discrete-time dynamics
described by a chaotic map.
In order to study Laminar Chaos in an experiment,

we use an opto-electronic oscillator. An opto-electronic
oscillator is an attractive system for the study of Lami-
nar Chaos because it is a well-understood system whose
oscillations arise from nonlinearity and time delayed feed-
back. Opto-electronic oscillators with fixed time de-
lays have been used for a variety of applications, in-
cluding generation of microwaves with low phase noise
[28, 29], neuromorphic computing [30, 31], sensing [32],
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FIG. 1. An illustration of the opto-electronic oscillator we
used to observe Laminar Chaos. Red lines indicate the optical
path, black lines indicate the electronic path, and green lines
indicate signal-processing on the FPGA.

and chaotic communications [33]. Opto-electronic oscil-
lators are known to display a wide variety of dynamics
[34–36], including periodic dynamics [28], breathers [37]
and broadband chaos [38].
An illustration of our opto-electronic oscillator is

shown in Fig. 1. A fiber-coupled laser diode emits light
at a constant intensity. The light intensity is modulated
by an integrated Mach-Zehnder intensity modulator such
that the normalized intensity transmitted through the
modulator is given by I(z) = sin2(z(t) + φ) where z(t)
is the normalized voltage applied to the RF port of the
modulator and φ is the modulator bias. The modula-
tor provides the nonlinearity in our feedback loop; i.e.,
in our system F (z) = sin2(z(t) + φ). The output of the
modulator is converted into an electrical signal by a DC-
coupled photoreceiver. This electrical signal is read into
a field-programmable gate array (FPGA) via an analog-
to-digital converter (ADC). The time-varying delay is
implemented via a tapped shift-register and multiplexer
(MUX) on the FPGA. The output of the variable delay
is digitally filtered by a second-order (two-pole Butter-
worth) low pass filter with cutoff frequency fcut = 3183
Hz. The filtered signal is output via a digital-to-analog
converter (DAC). This electrical signal is amplified and
applied to the RF port of the modulator, completing the
feedback loop. The round-trip gain of the feedback loop
is quantified by the parameter µ. We measure µ directly
by breaking the feedback loop at the input to the modu-
lator and measuring the steady-state value of z.
While the FPGA gives us great flexibility in the choice

of the form of the delay τ(t), we choose the time-varying
delay as

τ(t) = τ0 +
A

2π
sin(2πt/T̃ ), (2)

where τ0, A and T̃ are the mean, amplitude and period
of the delay, respectively. The FPGA is clocked at a fre-
quency νs and thus operates in discrete time. We choose
νs = 100 kHz and the delay period T̃ = 10 ms, so that one
period of the delay is divided into 1000 time steps. Thus,
Eq. (2) is an accurate approximation of the piecewise-

continuous variation of the delay in the experiment. Ta-
ble S1 in the Supplemental Material provides a list of
the parameter values that describe our opto-electronic
oscillator as well as the corresponding parameters in di-
mensionless time such that the period of the delay T̃ = 1,
which are used for numerical simulations.
There are two fundamentally different classes of time-

varying delays [39, 40]. Systems with conservative delays
are equivalent to systems with constant delay; on the
other hand, systems with dissipative delays (that is, the
access map tn+1 = R(tn) is dissipative) are not. Only
systems with dissipative delays are candidates to display
Laminar Chaos [27]. We consider two different values
of the parameter τ0 so that we can explore our opto-
electronic oscillator with a dissipative delay (τ0 = 15.0
ms) and with a conservative delay (τ0 = 15.4 ms). In
Ref. [27] it was shown that a further necessary condition
for Laminar Chaos is given by λ[F ] > 0 and

λ[F ] + λ[R] < 0, (3)

where λ[F ] and λ[R] are the Lyapunov exponents of the
map zn+1 = F (zn) and the access map tn+1 = R(tn),
respectively. For our system, λ[R] ≈ −0.83 when τ0 =
15.0 ms (and λ[R] = 0 when τ0 = 15.4 ms). We choose
µ = 2.2 and φ = π

4 so that λ[F ] ≈ 0.31 and Eq. 3 is
satisfied when τ0 = 15.0 ms.
Noise plays an important role in any experimental sys-

tem. In our opto-electronic setup, inherent sources of
noise include discretization noise in the ADC and DAC,
electronic noise in the DAC amplifier, and Johnson noise
in the photoreceiver. In order to experimentally test
the robustness of Laminar Chaos to different amounts
of noise, we use the FPGA to add noise to the experi-
ment in a controlled way. Specifically, at each time step
we add numerically generated Gaussian white noise with
zero mean and standard deviation ζ to the normalized
intensity I measured by the ADC.
Figure 2 shows measured experimental time series.

When τ0 = 15.0 ms, the delay is dissipative and Laminar
Chaos is observed, as shown in Figure 2a-c for different
values of added noise strength ζ. The nearly constant
laminar phases are clear in Fig. 2a-b, but are more dif-
ficult to observe by inspection in Fig. 2c. In contrast,
when we set τ0 = 15.4 ms, the delay becomes conserva-
tive and we observe only Turbulent Chaos (Fig. 2d-e).
Our opto-electronic oscillator possesses the three main

attributes–a nonlinearity, a band-limiting element, and
a time-varying delay–that are modeled by Eq. 3 and
are necessary for Laminar Chaos [27]. However, there
are three significant differences between the present ex-
perimental realization and the theoretical investigation
in Ref. [27]. First, we used a two-pole Butterworth fil-
ter, which means that our opto-electronic oscillator is a
second-order system. Second, the ADC and DAC induce
digitization (“sampling”) and quantization (“round-off”)
noise into the experiment, which may have significant
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FIG. 2. Experimental time-series for different values of the
mean delay τ0 and for different values of the strength ζ of
the external noise. The trajectories (a) − (c) correspond to
a dissipative delay (τ0 = 15.0ms) and show Laminar Chaos,
whereas the trajectories (d) and (e) correspond to a conser-
vative delay (τ0 = 15.4ms) and show Turbulent Chaos.

effects on the dynamics of hybrid systems with delayed
feedback ([41, 42] and Refs. therein). The effect of a dig-
ital implementation on the access map dynamics is not
clear, but the experimental results show that Laminar
Chaos can still be observed. Third, noise is present in the
experiments, which can make it difficult to identify lam-
inar phases for increasing noise strength. In the follow-
ing, we study the robustness of Laminar Chaos to noise
and show that the noisy trajectories (a)-(c) exhibit fea-
tures that clearly distinguish Laminar Chaos from other
dynamics. All together, our results show that Laminar
Chaos is robust to the details of the experimental imple-
mentation and therefore should be possible in a variety
of natural and engineered systems.
In order to take into account the presence of noise in

the general model of Laminar Chaos (Eq. 1), we consider
the following delayed Langevin equation

1

T
ż(t) + z(t) = µF (z(t− τ(t))) +

σ
√
T
ξ(t). (4)

Exemplary trajectories of Eq. (4) for dimensionless pa-
rameters as in Table S1 are shown in Fig. 3. The trajec-
tories in Fig. 3a-c were computed with τ0 = 1.5, while
those in Fig. 3d-e were computed with τ0 = 1.54. In
all cases, the trajectories give qualitative agreement with
the corresponding experimental time series in Fig. 2.
Two identifying features of Laminar Chaos are the pe-

riodicity of the duration of the laminar phases, which
is equal to the delay period [27], and the description
of the intensity levels of the laminar phases by a one-
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FIG. 3. Trajectories generated from Eq. (4) with parameters
from Table S1 for different mean delays τ0 and noise strengths
σ. The trajectories (a)− (c) correspond to a dissipative delay
(τ0 = 1.5) and show Laminar Chaos, whereas the trajectories
(d) and (e) correspond to a conservative delay (τ0 = 1.54)
and show Turbulent Chaos.

dimensional chaotic map zn+1 = F (zn). We now show
that these features can be used to identify Laminar chaos
in the time series from our opto-electronic experiment
and from simulations of Eq. (4). The laminar phases can
be validated by considering the derivative of z. With-
out noise (σ = 0), the derivative is roughly zero between
the bursts, i.e., it is characterized by phases with ap-
proximately zero amplitude, which are periodically in-
terrupted by short large amplitude bursts. In the pres-
ence of noise we consider the approximate derivative

∆h[z](t) =
z(t+h)−z(t)

h
instead of the derivative, since the

latter is not well defined. In this case the approximate
derivative is characterized by phases of small amplitude
which are periodically interrupted by short large ampli-
tude bursts. For increasing noise strength σ, one expects
that the fluctuation strength in the low amplitude phases
increases, such that the periodic structure is still present
but gets blurred. To determine the position of the lami-
nar phases of a laminar chaotic trajectory z(t), we con-
sider the temporal distribution of the variance σ2

d[z](t) of
the approximate derivative ∆h[z](t), which is defined by

σ2
d[z](t) = lim

N→∞

1

N

N−1
∑

n=0

(

∆h[z](t+ n T̃ )
)2

− (µd[z](t))
2,

(5)
where

µd[z](t) = lim
N→∞

1

N

∑N−1

n=0
∆h[z](t+ n T̃ ). (6)

If the delay period T̃ is unknown, it can be determined
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FIG. 4. Detection of the laminar phases: Temporal distri-
bution of the variance σ2

d (in units of T

h
) of the approximate

derivatives (h ≈ 0.0033) of (a) laminar chaotic trajectories
of Eq. (4) and (b) experimental trajectories (same parame-
ters as in Fig. 2 and Fig. 3). The laminar phases (low σ2

d)
and the burst-like transitions between them (high σ2

d) are lo-
cated around the attractive and repulsive fixed points of the
reduced access map (dashed and solid lines in (a)), respec-
tively. In the experimental data the location of the attractive
fixed point is not known, and approximated via the local min-
ima of σ2

d (dashed lines in (b)). The rotation number ρ of the
access map is ρ = −

3

2
leading to q = 2 laminar phases per

period.

by analyzing the power spectrum of ∆h[z], in which there
are large peaks at integer multiples of 1/T̃ .

Figure 4 shows the variance σ2
d of exemplary Lam-

inar Chaos trajectories generated with different noise
strengths σ and ζ via Eq. (4) (a) and via the experi-
mental setup (b). The periodic alternation of high and
low values of σ2

d corresponds to high (bursts) and low
frequency (laminar) phases of the laminar chaotic trajec-
tory. The local minima of σ2

d can be used to determine
the position of the laminar phases and the number of
laminar phases per period, i.e. the denominator q of the
rotation number of the access map.

Next, we check the connection of the intensity levels of
nearby laminar phases, i.e., the connection between the
values of the trajectory at the local minima of σ2

d. To do
this, we plot the intensity zn+p′ of the (n+p′)th laminar
phase against the intensity zn of the nth laminar phase,
where p′ ∈ N and p′ > 0. Define p as the numerator of
the rotation number ρ = − p

q
of the access map R. For

Laminar Chaos, when p′ = p, the points (zn, zn+p) re-
semble the graph (z, µF (z)). If the access map is not
known, one finds the correct p′ = p from the smallest
number for which the points (zn, zn+p′) resemble a line,
which means that both the nonlinearity F (z) and the
rotation number ρ = − p

q
of the access map can be recon-

structed from laminar chaotic trajectories. If no such p′

can be found, the trajectory can not be characterized as
Laminar Chaos.

We observed exactly this behavior in numerical simu-

FIG. 5. Connection between the laminar phases for the lam-
inar chaotic trajectories from (a) Fig. 3 (simulation) and (b)
Fig. 2 (experiment). The intensity zn+p′ of the (n + p′)th
laminar phase is plotted vs. the intensity zn of the nth
phase for p = p′ = 3. The reconstruction of the nonlin-
earity (z, µF (z)) (solid line) is possible even for high noise
strengths. For the experimental data the black line rep-
resents the fit of the data for ζ = 0 to the nonlinearity
µ̂F̂ (z) = µ̂ sin2(z + φ̂0) + ĉ0, where µ̂ ≈ 2.229 ± 0.002,

φ̂0 ≈ 0.8074 ± 0.0004 and ĉ0 ≈ −0.103 ± 0.002, where the
·̂ is used to emphasize that the these parameter values are fits
to the data shown in Fig. 5b, not directly measured. The
clipping below z = 0 is due to the fact that the light intensity
cannot be lower than zero.

lations of Eq. 4 and experimental measurements. Fig.
5 shows the accurately reconstructed nonlinearity for
p′ = p = 3. This type of time series analysis can distin-
guish laminar chaos from both turbulent chaos and from
the periodic square wave solutions described in Refs. [36]
and [44]. For the turbulent chaos in Figs. 2d-e and 3d-e,
the graph (not shown) of (zn, zn+p′) does not resemble
a line for any p′; instead the entire space zn ∈ [0, µ],
zn+p′ ∈ [0, µ] is filled. In contrast, for a periodic square
wave a similar plot would result in only two (or period
doubled) points along the sin2 curve, rather than the
full curve as in Fig. 5. Since we observe both the pre-
dicted periodicity of the temporal duration of the laminar
phases and the relation of the amplitudes by the nonlin-
earity F , we can conclusively state that we have observed
Laminar Chaos in our opto-electronic oscillator.

We have provided the first experimental demonstration
of Laminar Chaos and confirmed its robustness to noise
both experimentally and numerically. Our experiments
show that a fundamentally new type of dynamical behav-
ior exists in the real world, despite the highly sensitive
nature of the access map dynamics and in the presence
of noise, imperfections, and the hybridization of analog
and digital components. This experimental observation
stimulated the development of time series analysis tech-
niques to show conclusively that we have observed lam-
inar chaos and to distinguish it from other dynamical
behaviors, such as turbulent chaos and period-doubled



5

square waves. Our work will motivate theoretical and
experimental research to explore the world of phenom-
ena opened up by the presence of time-varying delays.
For example, the complex transition from laminar chaos
to turbulent chaos via the sequence of generalized lam-
inar chaos of increasing order [43] is not yet explored
at all in experiments, and only partially in theoretical
studies. Further, our experiments make clear the prac-
tical relevance of laminar chaos, and open up potential
applications of its inherent time-multiplexing for commu-
nications and computing.
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