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Temporal multiplexing provides an efficient and scalable approach to realize a quantum random
walk with photons that can exhibit topological properties. But two dimensional time-multiplexed
topological quantum walks studied so far have relied on generalizations of the Su-Shreiffer-Heeger
(SSH) model with no synthetic gauge field. In this work, we demonstrate a 2D topological quantum
random walk where the non-trivial topology is due to the presence of a synthetic gauge field. We
show that the synthetic gauge field leads to the appearance of multiple bandgaps and consequently,
a spatial confinement of the quantum walk distribution. Moreover, we demonstrate topological edge
states at an interface between domains with opposite synthetic fields. Our results expand the range
of Hamiltonians that can be simulated using photonic quantum walks.

Photonics provides a compelling platform to study
quantum random walks [1]. Photons can propagate over
long distances without losing coherence, enabling com-
plex quantum walks that can implement various quantum
computing algorithms [2–4], and also simulate a broad
range of quantum Hamiltonians [5]. Photonic quantum
walks in both one and two dimensions can be imple-
mented in spatial degrees of freedom using beam split-
ters [6–8] or coupled waveguide arrays [9–11]. But such
approaches are difficult to scale to large number of steps,
particularly when going to higher dimensions.

Synthetic spaces provide an alternative approach to
scale the state-space of the walker without requiring com-
plex photonic circuits. Examples of synthetic spaces in-
clude frequency [12–16], orbital angular momentum [17–
20], and transverse spatial modes as recently experimen-
tally realized [21]. Time-multiplexing is another syn-
thetic space that is particularly easy to work with [22–
27]. Time-multiplexed quantum walks have the advan-
tage that they can span an extremely large state-space
with only a few optical elements and can efficiently scale
to higher number of walker dimensions.

Recently, time-multiplexed quantum walks have been
used to explore topological physics and the associated
edge states in both one and two dimensional systems
[26, 27]. Most realizations of such topological quantum
walks are based on the split-step quantum walk proto-
col [28–31]. Similar to the Su-Shreiffer-Heeger (SSH)
model, here the non-trivial topology is a result of the
direction-dependent hopping strength between the lattice
sites. However, many of the most interesting topological
Hamiltonians, such as the integer quantum Hall effect
[32], the Haldane model [33], and the quantum-spin Hall
effect [34], require gauge fields that generate direction-
dependent hopping phases. Synthetic gauge fields have
been realized in a variety of physical systems [35–40] and
also proposed in discrete-time quantum-walks [41]. How-
ever, so far, time-multiplexed quantum walks with syn-
thetic gauge fields have only been experimentally realized
in 1D, which severely restricts the number of topological
Hamiltonians that can be explored.

Here, we experimentally demonstrate a topologi-
cal synthetic gauge field in a two-dimensional time-
multiplexed quantum walk. We show that in our discrete-
time quantum walk, the pseudo-energy band structure
exhibits multiple bandgaps depending on the magnitude
of the synthetic gauge field. These bandgaps result in the
confinement of the quantum walker, as opposed to ballis-
tic diffusion that would otherwise occur [42]. Moreover,
we demonstrate the presence of multiple topological edge
bands at an interface between two domains with opposite
magnetic fields. Because of the presence of two topolog-
ical edge bands, our system supports two sets of non-
degenerate topological edge states that travel in forward
and backward directions along the interface.

To implement a gauge field, pulses must accumulate
a net phase shift when walking around a closed trajec-
tory. Figure 1a shows how we implement this condition.
We apply a phase shift of yφ when the walker moves to
the right, and −yφ when the walker steps to the left,
where y is the vertical coordinate of the walker. By this
way, pulses will accumulate a net phase when walking
around a closed trajectory proportional to the enclosed
area. This phase convention realizes a uniform magnetic
field in the Landau gauge. This type of phase pattern
should be distinguished from the position dependent but
direction independent phase shifts previously used for im-
plementation of electric fields in discrete-time quantum
walks [43–45].

In our time-multiplexed photonic quantum walk, opti-
cal delays map the walker state-space into time-delays of
optical pulses. Similar to earlier studies [24, 27] of two
dimensional quantum random walks, we implement these
delays using a pair of nested fiber delay loops. Figure 1b
shows the schematic of the experimental setup, and the
full details are explained in the Supplementary Material
[46]. The experimental setup essentially consists of two
beam-splitters with their ports connected to fibers of dif-
ferent lengths such that they map the ±x and ±y direc-
tions to different time delays. One complete propagation
of an optical pulse around the loop is then equivalent to
hopping of the walker to one of the four possible corners
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Figure 1. (a) Schematic explaining the possible movements
of a walker at spatial position (x, y) along with applied phase
shifts during each step of the quantum walk. (b) Schematic of
the 2D quantum walk setup describing the details of the ex-
perimental setup. PD: photodetector, BPF: band pass filter,
SOA: semiconductor optical amplifier, EOPM: electro-optic
phase modulator, and PC: polarization controller.

in the synthetic space (Fig. 1a). Two semiconductor
optical amplifiers (SOAs) are employed to partially com-
pensate for the losses that the optical pulses experience
in each round trip. In this setup, we study the quantum
walk distribution at each time step via two photodetec-
tors analyzing two channels that we refer to as the up
and down channels as labeled in Fig. 1b. We initialize
the quantum walk through a single incident laser pulse
that is injected into the up channel starting the evolu-
tion of quantum walk distribution from the origin in syn-
thetic space. Here, we have analyzed the evolution of the
quantum walk based on the pulses detected in the down
channel. The electro-optic modulators which are driven
by programmable voltage waveforms are used for pro-
ducing the desired phase shifts to generate the synthetic
gauge field.

Figure 2 compares the evolution of the quantum walk
distribution with and without an applied gauge field.
Figure 2a shows the experimental results for the evolution
under no applied gauge field. In this figure, the distri-
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Figure 2. (a) Experimental observations and (b) theoretical
predictions of the evolution of the quantum walk distribution
under no phase modulation. (c) Experimental observations
and (d) theoretical predictions of the evolution of the quan-
tum walk distribution under linearly dependent phase mod-
ulation φy = yφ for the case of φ = π/2. The left, middle,
and right columns show the distributions at time steps of 1,
5, and 9, respectively. In these plots all the distributions are
normalized to their maximum.

bution of the quantum walker is shown at three different
time steps of 1, 5, and 9. In the absence of a gauge field,
the quantum walk exhibits rapid diffusion. These results
are consistent with the theoretical predictions shown in
Fig. 2b. Figure 2c shows the experimental results for the
evolution of the quantum walk distribution in the pres-
ence of a gauge field with φ = π/2. The gauge field leads
to suppressed diffusion and confinement of the quantum
walk distribution. The experimental results shown in Fig.
2c for the case of a gauge field with φ = π/2 are consis-
tent with the theoretical predictions shown in Fig. 2d.

We calculate the similarity of the measured distribu-
tions relative to the theoretical distributions (Pth) based
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on F (n) =
∑
x,y

√
Pth (x, y;n)Pexp (x, y;n). For the

case of no applied gauge field, we obtained similarities
of 0.999, 0.996, and 0.985 for time steps of 1, 5, and 9,

respectively. Similarly, for the quantum walk under the
gauge field we determined similarities of 0.999, 0.993, and
0.972 for time steps of 1, 5, and 9, respectively.
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Figure 3. (a) Comparison of the theoretical and experimental results for the variation of the quadratic mean of x under no
gauge field as well as under the gauge field with φ = π

2
. (b) Comparison of the theoretical and experimental results for the

variation of the quadratic mean of y under no gauge field as well as under the gauge field with φ = π
2
. The error bars in

the measurements are smaller than the size of the plotted data points. (c, d) Band structure of the system under no phase
modulation (φ = 0) and a linear phase modulation (φ = π

2
).

To provide a more quantitative analysis of the effect
of the gauge field on the confinement of the quantum
walk distribution, we calculate the variation of the spa-
tial quadratic means as a function of time step. Figures
3a and 3b plot the quadratic means of x and y with gauge
fields of φ = 0 and φ = π/2. With no applied gauge field,
the quadratic means show nearly linear variation with the
time step, consistent with ballistic diffusion (See Supple-
mentary Material [46] for analytical explanation). But
under the application of the gauge field with φ = π/2,
the quadratic means show reduced diffusion. The de-
crease of the quadratic means in both directions is due
to the confinement of the quantum walk distribution un-
der a constant pseudo magnetic field. Figures 3a and 3b
confirm the agreement of the experimental results with
the theoretical predictions, both with and without the
effect of the gauge field. (See also Fig. S3 for the nu-
merical study of the variation of quadratic means over a
larger number of steps)

In order to better understand the confinement of the
quantum walker in the presence of a gauge field, we first
calculate the band structure of the quantum walk. The
full evolution of the walker is determined by the single-
step propagation matrix U , which advances the quan-
tum walk distribution by one time-step. According to
Floquet band theory, the single-step propagation matrix
determines the effective Hamiltonian from U = e−iHeff ,
which gives the band structure of the walker. With no
synthetic gauge field (φ = 0), we can analytically solve
for the dispersion relation of the walker (See theoreti-
cal analysis section in the Supplementary Material [46]).
The quasi-energy bands of the system in this case are

E± = ± arccos (sin (kx) sin (ky)) , (1)

where kx and ky are the momentum wave vectors in in-
verse synthetic space. Figure 3c shows the correspond-
ing band structure of the system. Because of the dis-
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crete nature of the quantum walk, the quasi-energy spec-
trum wraps every 2π, and therefore we restrict the quasi-
energies to the range of −π and π. As Fig. 3c shows, the
system is gapless, and there are four Dirac points, two at
E = 0 and two at E = ±π.

We next consider the effect of the synthetic gauge field
on the band structure. Figure 3d shows the band diagram
for the case of φ = π

2 . An analytical solution for this
case also exists (see Supplementary Material [46]), with
a quasi-energy band structure given by

En,± =
nπ

2
± 1

4
arccos

(
1− 1

2
sin2 (2kx) sin

2 (2ky)

)
(2)

for n ∈ Z. Similar to the case of integer quantum Hall
effect, the introduction of a gauge field produces a series
of topological bands. For φ = π

2 , we observe four dou-
bly degenerate bands. However, because of the wrapping
of pseudo-energy, one set of bands is split and appears
close to energies ±π. In contrast to the zero gauge field,
the band structure in the presence of a synthetic gauge
field exhibits bandgaps that lead to the confinement of
the quantum walker. We have also obtained the corre-
sponding band diagrams for several other choices of φ.
We have presented these results (See Fig. S2) along with
their derivation in the Supplementary Material [46].

One consequence of a gauge field is the presence of
edge states at the boundaries. In this synthetic space,
we can make a boundary by applying two different gauge
fields to two neighboring regions [41]. Here, using a phase
modulation pattern of φy = yφ for y > 0 and φy = −yφ
for y < 0, we realize two domains with opposite mag-
netic fields (y > 0 and y < 0), as illustrated in Fig. 4a.
Figure 4b shows the band structure for such a phase pat-
tern with φ = π

2 . The band diagram contains multiple
bandgaps hosting unidirectional edge states that prop-
agate at the boundary in opposite directions. The cor-
responding band diagrams for several other choices of φ
are also presented in the Supplementary Material [46](See
Fig. S4).

Figure 4c shows experimentally measured results for
the phase modulation pattern shown in Fig. 4a. We
start the quantum walker at the interface between the
two magnetic domains, precisely where edge states should
be present. In this case the quantum walker predomi-
nantly walks along the edge, remaining confined to the
boundary between the two regions. These results are
consistent with the numerical simulations demonstrating
how the edge states cause the quantum walk distribution
to move mainly along the boundary (Fig. 4d). We also
note that because of the linear dispersion of the topolog-
ical edge states (see Fig. 4b), the photonic wavepackets
moving to the left and the right along the domain bound-
ary experience minimal spreading (Fig. 4c), unlike that
in the absence of edge states (Fig. 2c). We have also
studied the robustness of the edge modes against sharp

(d) Theory

(a) (b)

Exp.(c)

Figure 4. (a) The schematic describing the phase modula-
tion pattern of φy = |y|φ for φ = π

2
in the synthetic space.

(b) Band diagram of the corresponding system which clearly
shows the presence of edge states in the bandgap. (c) Ex-
perimental observations and (d) theoretical predictions of the
evolution of the quantum walk distribution moving along the
boundary under the phase modulation of φy = |y|φ for φ = π

2
.

The left, middle, and right columns show the distributions at
time steps of 1, 5, and 9, respectively. In these plots all the
distributions are normalized to their maximum.

bends in the Supplementary Material [46]. For this pur-
pose, we have considered a non-planar interface and have
shown that the quantum walk distribution moves along
the boundary and remains confined to it in spite of its
non-planar shape (See Fig. S5).

Typical topological quantum walks result in unidirec-
tional edge state propagation. Here, however, we do not
see unidirectional movements because we are initializing
the walker at a position eigenstate, which is a superpo-
sition of all energy eigenstates of the band structure. As
can be seen from Fig. 4b, different energy bands support
topological edge states propagating in either the left or
right direction. We could excite specific edge modes by
engineering the initial distribution of the quantum walk
to be confined in corresponding energies.

In conclusion, we have implemented time-multiplexed
two-dimensional quantum random walks with a synthetic
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gauge field. This gauge field leads to the confinement
of the walker evolution. Through application of an in-
homogeneous gauge field on this quantum walk, we ob-
served the creation of topological edge states that are
confined at the boundary of two distinct gauge fields.
These results demonstrate a versatile approach to create
various types of band structures with tunable number
of bandgaps. In our setup there exists an overall loss
of around 6.5 dB in each round trip and a major part
(about 3 dB) of the loss is coming from the fiber coupled
modulators. In order to increase the number of steps,
we used optical amplifiers to compensate for round-trip
losses without damaging the phase coherence of the op-
tical pulses. These losses can be reduced by decreasing
coupler losses through fiber splicing and the use of mod-
ulators with lower insertion loss. Eliminating these losses
opens up a path towards quantum random walks that can
be implemented at the single photon level, or in higher
dimensions. Addition of optical nonlinearities and inte-
gration of this platform with single photon emitters could
provide another interesting opportunity to study topo-
logical band structures with optical interactions [47, 48].
Ultimately, our results expand the toolbox of quantum
photonic simulation and provide a scalable architecture
to study photonic quantum walks with non-trivial topolo-
gies.
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