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We experimentally and theoretically investigate the dynamics of inhibitory coupled self-driven
oscillators on a star network in which a single central hub node is connected to k peripheral arm
nodes. The system consists of water-in-oil Belousov-Zhabotinsky ∼100µm emulsion drops contained
in storage wells etched in silicon wafers. We observed three dynamical attractors by varying the
number of arms in the star graph and the coupling strength; (i) unlocked ; uncorrelated phase
shifts between all oscillators, (ii) locked ; arm-hubs synchronized in-phase with a k-dependent phase
shift between the arm and central hub, and (iii) center silent ; central hub stopped oscillating and
the arm-hubs oscillated without synchrony. We compare experiment to theory. For case (ii), we
identified a logarithmic dependence of the phase shift on star degree, and were able to discriminate
between contributions to the phase shift arising from star topology and oscillator chemistry.

Discrete networks of self-driven oscillators represent
a broad class of physical systems [1–11]. Here we fo-
cus on an important goal of oscillator network research;
to identify how (i) individual oscillator’s dynamics, (ii)
network topology and (iii) coupling type conspire to
create emergent spatio-temporal patterns in the form
of steady phase relationships between oscillators. Ad-
dressing this fundamental goal has motivated the devel-
opment of controlled experimental systems that operate
with varying degrees of autonomy [12–20]. In this study
we employ a model experimental system consisting of a
microfluidically-assembled discrete network of Belousov-
Zhabotinsky (BZ) chemical oscillators and compare the
results with both a discrete reaction-diffusion (RD) net-
work model and phase model.

The theoretical foundation of the BZ reaction is well
established enabling near-quantitative modeling of both
isolated and coupled oscillators. The novelty of this
study arises from our ability to vary the topology and
internodal coupling of the network, and to parallelize
experiments through microfluidic fabrication techniques
[18, 19]. We examine inhibitory coupling, which pro-
motes symmetry-breaking phenomena by preferring a π-
phase shift between neighbors [16, 19, 21–25]. We arrange
the cells in a network with star topology, consisting of a
central hub node connected by k-arms to other nodes, as
illustrated in Fig. 1, and show how dynamics predictably
depart from this simple anti-phase synchrony by varying
k. Star networks have been considered in theoretical [26]
and experimental studies on electronic networks [27], but
never in natural systems. Star networks are an impor-
tant naturally occurring motif in neural networks that
perform cognitive [28–30] and sensorial functions [31],
but living neural networks have too many unknown pa-
rameters to enable disentangling the roles of oscillator
dynamics and network topology on emergent behavior.

Notably, our BZ system uses RD processes to produce

the oscillator dynamics, star network topology and in-
hibitory coupling. Thus the dynamics belong to the class
of natural physical-chemical phenomena, in contrast to
other dynamical systems in which the oscillators, cou-
pling, or both are mediated through electronic hardware
[1, 2, 20, 27, 32–34]. Our system therefore demonstrates
the potential for creating stand-alone soft materials de-
signed to generate specific self-organized spatiotemporal
patterns. Specifically, we seek the engineering principles
that control the phase relationship between coupled os-
cillators. An application of such materials is to make
autonomous, soft robots that run purely on chemicals
like living organisms, rather than powered by motors
and controlled by computers. In this scenario, the BZ
network would function as a central pattern generator
found in the nervous system of many animals [19].

We probe the dynamical states of the system as a func-
tion of inter-nodal coupling strength and star degree,
thereby focusing on the impact of physical changes to the
star network while taking the BZ chemistry as a known in
our experiments and models. We compare observations
to two levels of theory: a discrete RD model with Vanag-
Epstein [21] chemical dynamics taking place at each node
and a phase model constructed from the discrete model
that we use to examine the topology-dependence of lock-
ing angles.

Strikingly, we observe that the locking angle between
the cluster formed by synchronized arm nodes and the
hub node deviates from perfect anti-phase synchrony
with a logarithmic dependence on k. The phase model
predicts that the prefactor for this dependence depends
only on the interaction function and can therefore be nu-
merically derived for any oscillator from a model or an
experimentally acquired phase response curve [35]. This
result disentangles oscillator and coupling physics from
topological effects by compactly showing how each come
together to produce topology-dependent phase locking.
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FIG. 1. (a) Schematic of inhibitory-coupled star network of
degree k. (b) Schematic of experimental setup: BZ aqueous
drops are stored in circular wells etched in a silicon wafer and
separated by fluorinated oil. (c) Reflection microscopy images
of loaded star networks with different numbers of arms and
arm lengths; movies S1-S8, (d) and (e) time trace of droplet
intensity and corresponding evolution of arm node phase rela-
tive to hub node showing phase-locking for experiment (movie
S2) and point model simulation (Eqn. 1).
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FIG. 2. Interaction function normalized by coupling strength
Hij/µ (thick blue line) describes how oscillator i’s phase
changes due to the presence of oscillator j as a function of the
phase difference between them Φij = Φi−Φj [36]. G / (kµ) de-
scribes how the phase difference along the k-arm-synchronized
manifold Φ1 = Φ2 = · · · = Φk evolves as a function of the
phase difference between the two clusters, Φ0a (thin lines)
(Eqn. 2).

Since the star graph’s cyclic symmetry is responsible for
coarsening the system into two clusters, our result will
generalize to other networks that can be similarly coars-
ened by identifying group orbits [1].

Experimental System. Surfactant stabilized emul-
sions of 100 micron diameter drops containing the aque-
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FIG. 3. State Diagrams as a function of arm separation
(plotted from large to small lengths) and star degree for (a)
experiment and (b) point model predictions, Eqn. 1, with
7.5% variations in H+ concentration. Hatched region indi-
cates where data was unobtainable due to geometric con-
straints. Examples of each dynamical state are shown in
movies S2-S6.

ous BZ solution were generated in a fluorinated oil [37].
A drop of the concentrated emulsion was pipetted onto
the etched silicon wafer, a cover glass was laid on top and
clamped together, thereby squeezing the BZ drops into
the etched network and sealing the device. Each wafer
contained hundreds of star networks. The design concept
was to make a device that was quick to load, intolerant to
failure, and reusable. Typically 90% of the networks fail
to load correctly. However, 10 - 20 successes are enough
to accumulate statistics. Both the silicon and glass are
completely impermeable to all chemical species ensuring
that each arm-drop only communicates with the hub-
drop [18]. The cavities containing the BZ drops are con-
nected with channels designed to be too narrow to house
drops, but contain oil, and therefore function as diffusive
conduits, Fig. 1B. The BZ reaction oscillates between a
reduced and oxidized state of the catalyst. The duration
of the oxidized, or activated state, is brief and during this
interval a large amount of the inhibitor, bromine, is also
generated. The inhibitory coupling between two drops
is provided by bromine, which due to its low polarizabil-
ity readily partitions into the oil [16]. All the chemicals,
their concentrations, and conditions for producing the
emulsion are described in the supplement.
Theory and Model. In a RD network consisting of

i = 1 · · ·N nodes and m = 1 · · ·M species, the dynamics
of the concentration cmi are governed by,

ċmi = Fmi (ci) +

N∑
j=1

µmijAij
(
cmj − cmi

)
, (1)

where Fmi (ci) models intra-nodal reactions given by the
Vanag-Epstein model of BZ chemistry [21] and the sec-
ond term captures inter-nodal diffusive transport propor-
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tional to the species-dependent coefficient µmij ; full ex-
pressions are found in the supplement [38]. This model
assumes that all the chemistry occurs at discrete points,
i.e. it ignores concentration gradients within a drop. The
point approximation is justified because the width of the
oxidation front in the BZ reaction is larger than the size
of the droplets, thus each reactor oxidizes uniformly.

Modeling the coupling as linearly proportional to
the concentration difference between connected nodes is
equivalent to ignoring any chemical reactions and accu-
mulation of chemicals in the oil separating drops, which
is justified when the inter-drop gap is much less than the
diffusion length scale l ∼

√
DT , where D is the diffusivity

of bromine in oil and the timescale is given by the oscilla-
tion period T [16–18]. We consider gaps no greater than
60 µm. With diffusivity D ∼ O

(
10−9

)
m2s−1 and oscil-

lation period T ∼ O
(
102
)
s, the diffusion length scale is

l ∼300µm; thus we are safely in the quasi-steady regime.
Network connectivity is given by the adjacency matrix A
such that Aij = 1 if i and j are connected and Aij = 0
otherwise. We restrict our attention to the dynamics of
Eqn. 1 on star graphs with k arm nodes, Fig. 1a.

We additionally employ the method of phase-reduction
to create a further-simplified model of the phase-locked
dynamics [38–40]. The approach assumes that the state
of an isolated multi-variable chemical oscillator with
limit-cycle dynamics can be fully described with a sin-
gle phase variable. For weakly-coupled oscillators, the
slow dynamics of the network, obtained by averaging
over one oscillation period, take the form Φ̇i = ω +∑N
j=1AijHij (Φji) where Φi and Φ̇i are the phase and

instantaneous frequency of the ith oscillator, respectively,
ω is the frequency of an isolated oscillator (assumed to
be identical for all oscillators), Φji = Φj−Φi is the phase
difference between two oscillators, and Hij is a numeri-
cally calculated interaction function describing how the
instantaneous frequency of oscillator i is changed by the
presence of oscillator j, derived from Eqn. 1 and shown
in Fig. 2 [36]. We model oscillator interactions as occur-
ring entirely through diffusive transport of the inhibitory
species bromine; oscillator i is delayed by oscillator j for
nearly all Φij , with the the largest delay occurring just
before oscillator i is about to undergo a transition from
the reduced to oxidized state. Experimental conditions
are chosen to be consistent with the model [16, 17].

State Diagram. We observed three dynamical at-
tractors as a function of the number of arms in a star
graph and the coupling strength (Fig. 3). The states are
(i) unlocked (movie S5); unsynchronized oscillations of all
nodes, (ii) locked (movies S2-S4); arm-hubs synchronized
in-phase with a k-dependent phase shift between the arm
and central hub, and (iii) center silent (movie S6); a non-
oscillating, or intermittently oscillating central hub and
unsynchronized oscillations of all arm-hubs. Using pho-
tochemical inhibition, we are also able to change state
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FIG. 4. Locking angle Φ∗0a depends on star degree. (a)
Illustration showing how additional arm nodes impact locking
angle, (b) Histogram of experimental results for k = 1, 2, 3
and all coupling strengths, (c) Bifurcation diagram compar-
ing phase model (solid black lines are stable fixed points,
dashed are unstable), point model (Eqn. 1) with hetero-
geneity in acid concentration, µ = 0.066 s−1 (squares), point
model with identical oscillators, µ = 0.01-0.5 s−1 (circles),
and experiment (triangles). Error bars show standard error.
For log k � 1, Φ∗0a is given by Eqn. 3 (blue line).

dynamically by manipulating topology. Shining strong
light on a node inhibits oscillation, effectively pruning
that node from the network. We induced a transition
from center silent to locked in a 5-arm star by shining
light on two arms, effectively transforming the network
to a 3-arm star while leaving the coupling constant un-
changed. We also induced a transition from locked to
unlocked by shining light on the hub of a 3-arm star, as
shown in movies S7-S8 and Fig. S2 [38].

In Fig. 3, experiment and theory are compared. When
the coupling strength is low (large drop separation), the
unlocked state is observed. A network is considered un-
locked if a steady-state locking angle is not achieved dur-
ing the experiment, for theory, we examine a time window
commensurate with experiments corresponding to ∼20
oscillations. For moderate star degree, as one increases
the coupling strength, phase locking is observed. Fur-
ther increases to the coupling strength results in center-
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silent dynamics. For large star degree unlocking proceeds
directly to center-silent. Conversely, as star degree is
lowered, the coupling strength range over which phase-
locking occurs broadens. An analytic expression for the
diffusive rate µ [s−1] is presented in the supplemental
material, we expect µ to be inversely proportional to the
drop separation and to the volume of the receiving drop
[38].

In order to match the theory-predicted state diagram
with the experiment we introduced normally distributed
variations of 7.5% in H+, this created a distribution in
oscillation periods 223±13 s (∼ 13%); previous obser-
vations find 5% variation in intrinsic frequency but also
found the need to increase heterogeneity in simulations
for good agreement [23]. We ran each parameter combi-
nation (k and µ) twenty times, resampling the variation
in chemistry and initial conditions each time. We also
introduced a coupling strength reduction (fudge) factor
f = 0.15 to modify the predicted µ. Heterogeneity is
needed to both destroy synchrony when coupling is weak
[10] and move the transition from locked to center-silent
to lower k. Phase diagrams showing theoretical predic-
tions without these modifications are shown in the sup-
plement, Fig. S4 [38].

Variations in parameters are justified because the in-
ner, aqueous phase is composed of two reactant streams;
fluctuations in flow rates can therefore produce droplets
of varying composition and size. For simplicity, we con-
sider chemical heterogeneity alone. The reduction of the
effective coupling coefficient has been noted previously
[23]. These results indicate our idealized model is quali-
tatively, but not quantitatively, correct and further, that
system heterogeneity is an important parameter.

Steady State Locking Angles and Phase Model.
The phase interaction function Hij , assuming only
bromine transport between oscillators, is nearly com-
pletely negative meaning that coupled oscillators mutu-
ally delay one-another, Fig. 2 (bold curve). This pro-
duces a steady state phase shift between two oscillators,
at the maximum phase difference of π, Fig. 2 (k = 1
curve). Within the phase-locked regime, we experimen-
tally observe that as the number of arms increases, the
delay between when the hub and arm nodes oxidize de-
creases, Fig. 1d & e and Fig. 4a. We examine this depen-
dence using the numerically constructed phase model.

Since all solutions exhibit arm-locked dynamics, a con-
sequence of the arms forming a single orbit of the star
network’s graph [1], we examine the dynamics along
the arm-synchronized manifold Φ1 = Φ2 = · · · = Φk
and reduce the system to a single degree of freedom
Φ0a = Φ0−Φa with arm-synchronized cluster a and hub
0. The dynamics of this quotient network are described
by

Φ̇0a = kH0a (−Φ0a)−Ha0 (Φ0a) = G (Φ0a) . (2)

Examining arm-synchronized dynamics of N oscillators

is equivalent to considering a heterogeneous pair: a node
containing a single unit of volume V and a large node of
volume kV diffusively coupled through a conduit with
k-times the cross sectional area A of the connections
in the original network, inset of Fig. 4c. This volume
difference manifests as an asymmetric coupling constant
µ0a = kµa0. We report the system dynamics for vari-
ous k rescaled by the coupling strength and star degree
G / (kµ) so that as k becomes large the plotted amplitude
of the dynamics does not grow as well, Fig. 2.

The system’s locking angles are readily given by the
fixed points G (Φ∗0a) = 0 with stability determined by G ′

(< 0 stable, > 0 unstable). The results show that for
two equally sized nodes, there are four fixed points, two
of which are stable Φ∗0a = 0, π. However, the basin of
attraction associated with Φ∗0a = 0 is so small, it isn’t
visible in Fig. 2B. In contrast, the basin for Φ∗0a = π
is larger and deeper and therefore more accessible and
robust against differences in the intrinsic frequencies of
the wells, as seen experimentally [37, 41].

The phase model predicts that as the volume ratio in-
creases from unity, the hub oscillator is more delayed by
the collective action of the arm cluster, shifting Φ∗0a, Fig.
4. As the volume ratio increases, the fixed point contin-
ues to move until the volume ratio reaches 1:33.8 where a
saddle-node bifurcation eliminates the attractor, leaving
Φ∗0a = 0 as the only attractor, black line in Fig. 4.

These predictions compare favorably to experiment,
and the full chemical model without heterogeneity, Fig.
4. In the limit of weak coupling strength, assumed by
the creation of the phase model, the locking angle is µ-
independent. As coupling strength is increased in the
point model, predictions diverge with k more rapidly.
Additionally, for strong coupling (µ = 0.1− 0.5 s−1) the
system transitions to center-silent while for weaker cou-
pling (µ = 0.01−0.03 s−1) the system instead transitions
to in-phase synchrony as predicted by the phase model.
Heterogeneity introduced into the model Eqn. 1 to re-
produce the phase boundaries in Fig. 3 does not change
the overall dependence of locking angle on star degree,
squares in Fig. 4.

In the limit of weak coupling, Φ∗0a−π ∝ − log k, Fig. 4.
While physically k ∈ N for our system, more generally,
k represents the volume ratio between two diffusively-
coupled oscillators and can take on any positive value.
We anticipate logarithmic scaling because the deviation
from π should change sign, but not magnitude upon rela-
belling the quotient graph, which is equivalent to invert-
ing the volume ratio log (k) = − log (1/k). To identify the
pre-factor, we perform a regular perturbation expansion
of the locking angle with log (k) as the expansion vari-
able, with details provided in the supplement [38]. The
expansion approximates the location of the attractor of
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Eqn. 2 according to the scaling law

Φ∗0a = π + log (k)
1

2
H0a (Φa0)

(
dH0a

dΦa0

)−1
∣∣∣∣∣
Φa0=π

, (3)

which compares well to the phase model up to log k ∼
O (1). We emphasize that in the weak-coupling-limit
Φ∗0a is µ-independent and the comparison between the-
ory and experiment involves zero free parameters. The

first term, Φ
∗(0)
0a = π, arises from symmetry and is ag-

nostic to oscillator chemistry and network topology. In
contrast, the next order correction encodes information
specific to both. Information about the chemical reac-
tions enters through the oscillator’s phase response curve
and coupling to adjacent oscillators through H , while in-
formation about network topology enters through log k.
We note that while networks of repulsively coupled os-
cillators have been modeled simply as negatively cou-
pled Kuramoto oscillators Φ̇i =

∑N
j=1Aij sin (Φj − Φi)

[42, 43], our result shows explicitly that because H (π) =
sin (π) = 0, sine coupling does not predict the observed
topology-dependence for branching networks.

Discussion and Conclusion. In this Letter we show
how the coupling strength and topology of an inhibitor-
coupled BZ RD star-network controls transitions between
distinct dynamic states. We demonstrate that the high-
dimensional RD system of the star network, consisting
of (k + 1) ×M variables (Eqn. 1), can be reduced to a
low-dimensional phase model of k variables and further
simplified to a one-dimensional model using the cyclic
symmetry of the star graph. Eqn. 3 explicitly sepa-
rates topological effects from chemical dynamics and is
therefore readily transferable to other oscillator networks.
Further, we anticipate that the symmetry-based simplifi-
cation we employed will generalize to other graphs with
orbits originating from cyclic symmetries. While more
complex networks generally harbor additional attractors,
we speculate that a phase locking attractor with logarith-
mic dependence on size ratio will exist in cases of unequal
cluster size. We expect this to hold even as symmetry-
breaking bifurcations break up orbit-generated clusters
into smaller synchronized populations. Previous work
examining the relationship between dynamics and topol-
ogy identified conditions for synchronized clusters [1];
here, we obtain a tractable dynamical relationship be-
tween clusters of different sizes. Since symmetry-based
reductions require identical oscillators it is noteworthy
that we observe topology-dependent dynamics to be ro-
bust against experimental imperfections. These results
demonstrate the utility of model experimental RD sys-
tems for both testing theories of network dynamics and
providing engineering principles for dynamic soft mate-
rials.
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[6] Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A. L.
Barabási, Physics of the rhythmic applause, Physical Re-
view E - Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics 61, 6987 (2000).

[7] J. Pantaleone, Synchronization of metronomes, American
Journal of Physics 70, 992 (2002).

[8] F. Dorfler, M. Chertkov, and F. Bullo, Synchroniza-
tion in complex oscillator networks and smart grids, Pro-
ceedings of the National Academy of Sciences 110, 2005
(2013).

[9] A. Pikovsky, M. Rosenblum, and J. Kurths, Cambridge
Nonlinear Science Series 12 , 1st ed. (Cambridge Univer-
sity Press, 2003) p. 432.

[10] S. H. Strogatz, Nonlinear dynamics and chaos (Westview
Press, 2000).

[11] Y. Kuramoto, Chemical oscillations, waves, and turbu-
lence, 2nd ed. (Dover, 2012).

[12] Y. Jia and I. Z. Kiss, Spontaneously synchronized electro-
chemical micro-oscillators with nickel electrodissolution,
Journal of Physical Chemistry C 116, 19290 (2012).

[13] M. Wickramasinghe and I. Z. Kiss, Spatially organized
dynamical states in chemical oscillator networks: Syn-
chronization, dynamical differentiation, and chimera pat-
terns, PLoS ONE 8, e80586 (2013).

[14] M. Wickramasinghe and I. Z. Kiss, Spatially organized
partial synchronization through the chimera mechanism
in a network of electrochemical reactions. Physical chem-
istry chemical physics : PCCP 16, 18360 (2014).

[15] V. Horvath, D. Kutner, J. T. I. Chavis, and I. R. Ep-
stein, Pulse-coupled BZ oscillators with unequal coupling



6

strengths, Physical Chemistry Chemical Physics 17, 4664
(2015).

[16] N. Li, J. Delgado, H. O. González-Ochoa, I. R. Epstein,
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