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We elucidate the nature of neutral collective excitations of fractional quantum Hall liquids in the
long-wavelength limit. We demonstrate that they are chiral gravitons carrying angular momentum -
2, which are quanta of quantum motion of an internal metric, and show up as resonance peaks in the
systems response to what is the fractional Hall analog of gravitational waves. Relation with existing and
possible future experimental work that can detect these fractional quantum Hall gravitons and reveal
their chirality are discussed.

PACS numbers: 73.43.Nq, 73.43.-f

Introduction and Motivation – Study of neutral exci-
tation spectra of fractional quantum Hall (FQH) liquids
has a long history. It is now well-understood that there
is a sharp magneto-roton mode exhibiting a “roton" mini-
mum at a finite wave vector[1], which has been observed
experimentally[2]. The observability of this mode is re-
lated to the fact that it is a bound state of a Laughlin
quasiparticle-quasihole pair (or an quasi-exciton), which
can be created by the (Landau-level projected) density op-
erator, which is dipole-active; it can thus be excited elec-
tromagnetically at the appropriate finite wave vector. The
sharpness of the magneto-roton mode is tied to the fact
that its energy is below the continuum formed by more
complicated multi-quasiparticle/quasihole excitations (or
multi-rotons).

On the other hand the understanding of collective ex-
citations at long-wavelengths is far from complete. The
magneto-roton dispersion enters the continuum as the
wave vector decreases, making it very hard to identify,
and even casting doubt on its presence. More serious is
the fact that Kohn’s theorem dictates that dipole spectral
weight is exhausted by the cyclotron mode, making the
single mode approximation[1] completely ineffective at
zero wave vector. This also renders any long-wavelength
intra-Landau level collective excitation invisible to elec-
tromagnetic probe in the linear response regime[3].

In a parallel line of work, one of us[4] pointed out
that there exists an internal geometrical degree of free-
dom (or internal metric) responsible for the intra-Landau
level dynamics of the system, that is not properly cap-
tured by the standard description of FQH liquids in
terms of topological quantum field theories. Physical
implications of this geometrical degree of freedom has
been discussed extensively[5–9], in particular its exper-
imental observability[10–15]. Furthermore, it has also
been argued[4, 16–19] that this internal metric has its
own quantum dynamics, which gives rise to the long-
wavelength collective excitations in FQH liquids that can
be viewed as “gravitons". This provides a new insight into
the invisibility of long-wave length intra-Landau level col-

lective mode to electromagnetic probes: the graviton car-
ries total angular momentum 2, mismatching that of the
photon which carries angular momentum 1. In a recent
paper, another of us[20] argued that these “gravitons" can
instead be excited and probed using acoustic waves in the
crystal, whose effects mimic those of gravitational waves.

In this paper we present numerical results that demon-
strate unequivocally the presence of the graviton mode,
which shows up as a pronounced peak in the spectral
function of the dynamical gravitational response[20]. We
further reveal the chiral nature of the gravitons, namely
they come with a specific polarization corresponding to
angular momentum[21] -2. We will discuss possible ex-
perimental probes of these gravitons and in particular,
their polarization, as well as the relation between our re-
sults and closely related works.

Spectral Functions – Ref. 20 considered the cou-
pling between an oscillating effective mass tensor and
the intra-Landau level degrees of freedom of a two-
dimensional electron gas (2DEG) confined to the lowest
Landau level (LLL). For a two-body interaction of the form

V (2) = ∑
i< j

V (ri −r j)= 1
2

∑
q

Vqρqρ−q, (1)

where Vq is the Fourier transform of electron-electron in-
teraction potential V (r) and

ρq =∑
i

eiq·ri (2)

is the density operator, it was found that the coupling is
described by the operator

Ô(2) =∑
q

(q2
y − q2

x)Vqe−
1
2 q2`2

ρqρ−q, (3)

in which

ρq =∑
i

eiq·Ri (4)

is the LLL projected density operator, and R is the guid-
ing center coordinate. It is straightforward to generalize
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the above to multi-particle interactions; of particular rel-
evance to our later discussion is the case of a three-body
interaction

V (3) = 1
6

∑
q1q2

Vq1q2ρq1ρq2ρ−q1−q2 , (5)

in which case the coupling is given by

Ô(3) = ∑
q1q2

Vq1q2 (q2
1y + q2

2y + q1yq2y − q2
1x − q2

2x − q1xq2x)

× e−
`2
2 (q2

1+q2
2+|q1+q2|2)ρq1

ρq2
ρ−q1−q2

. (6)

Our numerical studies are based on the calculation of
spectral functions of Ô and its close relatives Ôσ (to be
specified below) in finite-size systems:

Iσ(ω)=∑
n
|〈n|Ôσ|0〉|2δ(ω−ωn), (7)

where |0〉 is the ground state, |n〉 is an excited state with
excitation energy ħωn. (from here on we set ħ= 1.) This is
the system’s transition rate due to an oscillating effective
mass tensor metric, which is analogous to an oscillating
metric induced by a gravitational wave.

To establish the chiral nature of the graviton, it is con-
venient to study operators that have “handedness” in-
stead of the ones given in Eqs. (3) and (6). Therefore we
define:

Ô(2)
∓ =∑

q
(qx ∓ iqy)2Vqe−

1
2 q2`2

ρqρ−q, (8)

where we have discarded an overall minus sign. A simi-
lar extension can be done for the 3-body or for that mat-
ter to the n-body case of the Read-Rezayi[22] sequence. In
this paper we will focus on the Moore-Read (MR) state[23]
with 3-body interactions. As we will see Ô∓ are the cre-
ation and annihilation operators of the graviton respec-
tively, while Ô = (Ô++ Ô−)/2 is equivalent to the displace-
ment operator in a harmonic oscillator, which couples to a
linearly polarized “gravitational wave"[20].

Numerical Results – To compare Iσ(ω) for different
sizes it is convenient to normalize it, by dividing out the
factor 〈0|Ô†

σÔσ|0〉, so that∫ ∞

−∞
Iσ(ω)dω = 1. (9)

We start with the Laughlin states. We consider both
cases of fermions (ν = 1/3) as well as bosons (ν = 1/2) on
toroidal geometries and evaluate Eq. (7). We have studied
sizes up to 12 particles. The latter is generally believed to
be larger than the correlation length (or size) of the sys-
tem beyond which thermodynamic behavior becomes vis-
ible. However, quantitative effects would still persist. For
small sizes almost the entire weight is exhausted by a sin-
gle graviton peak. For larger sizes we observe broadening
of the resonance and the appearance of smaller nearby
peaks. However, the integrated weight of the resonance
increases linearly with size, a trend that generally is not
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FIG. 1. A bird’s-eye view of the I−(ω) from fermionic Laughlin
ground state at ν = 1/3 for various sizes and geometries (Hex
stands for hexagon geometry; square geometry otherwise). The
graviton response can clearly be seen. The inset shows more
details near energies where the response is strong. For N = 10
and 11 we recovered over 97% of the total weights. Unlike the
case of bosons (shown below) the “background noise”a seems to
be stronger for fermions, which are also computationally more
costly than bosons. Accordingly, for N = 12 we recovered 90%
of the weight over 87% of which is in the window of the inset.
The rest, at higher energies, appear to be background noise. For
example, we recover over 99% of the weight for 10 electrons.
However, no significant peaks other than those shown in the
inset was seen. The total weight in the inset is only 87% of the
total weight. In other words about 12%, at higher energies, is
just background noise.
a Very small amplitude scatter of the data not near the graviton signal.

followed by the height of a single peak. For all the sizes
that we considered the graviton resonance produces the
largest response in the system. Figs. 1 and 2 show these
cases for fermions and bosons respectively.

The Hamiltonian for both cases consists of a sin-
gle pseudo-potential for relative angular momentum 1
(fermions) or 0 (bosons). Our energies are given in units
of the strength of these pseudo-potentials. We note that
the energies for which we see graviton responses are con-
sistent with previous numerical calculations[24] where
the graviton is the k = 0 energy of Girvin-MacDonald-
Platzman magneto-roton collective mode inside the ex-
cited states continuum.

To establish that gravitons are chiral on the torus we
employ the chiral operators Ô∓. Interestingly, Ô− has
the same effect as the operator of Eq. (3), while Ô+ an-
nihilates the model state, and so I+(ω) is identically zero.
The chiral operators, as noted, can be generalized to n-
body pseudo-potential Hamiltonians for the Read-Rezayi
sequence. We have explicitly verified this for the 3-body
Hamiltonian of the MR state. In fact, in all our plots (ex-
cept the Coulomb interaction case below) we show I−(ω).

The operator Ô− creates excitations with angular mo-
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FIG. 2. Same as Fig. 1 except for bosons at ν= 1/2. In this case
we have collected 99% of the total weight. The graviton response
again stands out against the background noise. For all sizes and
geometries the weights shown in the inset constitute over 98%
of the total.

FIG. 3. A bird’s-eye view of (a) and (c) fermionic I−(ω) with 3N
and 3N −2 orbitals and of (b) and (d) bosonic I(ω) with 2N and
2N−1 orbitals for N particles on disk geometry. For all sizes, we
recovered up to 97% of the total weight for fermionic case and
up to 99% for bosonic case. In all cases, the graviton absorptions
stand out against the background noise.

mentum −2, which is also the angular momentum of the
gravitons they create. To reveal this chirality more ex-
plicitly we also investigate the two Laughlin states on
disk geometry where angular momentum is a good quan-
tum number. Instead of using Eq. (8), we express Ô(2)

∓
in terms of anisotropic complex pseudo-potentials[25]:
O(2)

+ ∝ ∑
M
|m+2, M〉〈m, M| and O(2)− ∝ ∑

M
|m, M〉〈m+2, M|,

where |m, M〉 is a two-body state with the relative angu-
lar momentum m and center-of-mass angular momentum
M, with m = 1 for fermions and m = 0 for bosons. We

now see why Ô+ annihilates the Laughlin state: it tries to
turn a pair with relative angular momentum m into m+2,
which does not exist in the Laughlin state. As a result,
I+(ω) is zero everywhere. On the other hand, Fig. 3(a)
and (b) show strong graviton peaks in I−(ω) for fermionic
and bosonic cases, respectively. Comparing to the cases on
the torus, we find good agreement in peak positions, and
noticeably less broadening and background noise. The re-
sults are not sensitive to the number of orbitals we keep
as long as we have enough orbitals to accommodate the
Laughlin states; see Fig. 3(c) and (d).

We now return to toroidal geometry and investigate
the graviton contribution to the spectral functions for the
Coulomb potential at ν= 1/3, which is the experimentally
most relevant case. Fig. 4 shows I−(ω) for electrons at
ν = 1/3 on a square torus, where we use the Coulomb in-
teraction including finite quantum well thickness appro-
priate for the samples of Ref. [26], whose relation with our
work is discussed below. While the weights are smaller
than those of the model states, a clear signature of the
graviton is discernible in comparison to other peaks fur-
ther up in the continuum. In this case, Ô+ does not an-
nihilate the Coulomb ground state, because there do ex-
ist pairs with relative angular momentum m = 1 in the
ground state. Nonetheless, the chiral nature of the gravi-
ton is evident by the strong suppression of the I+(ω) com-
pared to I−(ω). This is because such pairs are rare, re-
flecting the Laughlin correlation.
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FIG. 4. The graviton response of the Coulomb potential ν= 1/3
ground state with hexagonal unit cell. The x-axis represent the
excitation energy measured from the ground state energy. The
large symbols at the bottom represent the relative weighta of
I+(ω) (N = 12 square and N = 11 circular symbols). The inset
shows scaling of the graviton energy vs inverse of the system
size. The lower points are energies of the main peak, whereas
the upper points are the average energies weighted by the size
of the corresponding peaks.
a To quantify the relative strengths, I+(ω) is normalized by the total

weight of the I−(ω).
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FIG. 5. The spectral function I−(ω) for the MR state of fermions
with even number of particles at ν= 1/2.

Our bounds on the energy of the graviton (0.07 – 0.105
in units of e2/4πε0`, ` is the magnetic length) shown in
the inset of Fig. 4, is consistent with the resonance en-
ergy (0.084) found in the inelastic light scattering mea-
surement of Ref. [26]. In such a two-photon process
(one photon absorbed and one photon emitted, also known
as Raman scattering), the total angular momentum of
the two photons match that of the graviton if they have
the appropriate polarization; as a result gravitons can be
excited[18]. We therefore identify the resonance of Ref.
[26] as due to the graviton excitation.

To obtain a more definitive prediction one may need
a more systematic sampling of the resonance energies,
which appear to be broadened and hence introduce the
scatter we observe in the data.

We next consider the MR states. As in the case of the
Laughlin states, for even numbers of particles the gravi-
ton has (orbital) spin of 2 and obeys Bose statistics. How-
ever, for an odd number of particles, in addition to the
graviton, in Ref. [16] it was shown that there exists a
fermionic “gravitino” resonance, which has spin-3/2. In
this paper we study the former, but defer the investigation
of gravitino to future studies. Fig. 5 shows I(ω) (which is
equivalent to I−(ω) for the same reason as the Laughlin
case) for 3-body interaction that makes the MR state ex-
act ground state for fermions at ν = 1/2. For this part,
we have again studied the square and hexagonal torus,
which are the two highest symmetry geometries.

In the case of the square geometry, the 3-fold degen-
eracy of the MR state for an even number of electrons is
split into two wave vectors that are not related by sym-
metry: one in the Brillouin zone (BZ) corner and a pair
of states on the BZ boundary (shown by asterisks in the
size labels in our plots). In both cases of fermions and
bosons we have included some of these ground states. In
some cases for the same size and geometry the two dis-
tinct ground states either show a single strong peak or a
few smaller neighboring peaks, but with comparable total
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FIG. 6. The spectral function I(ω) for the MR state of bosons
with even number of particles at ν= 1.

FIG. 7. The spectral function I(ω) for the MR state of bosons
at ν= 1 on a disc, where the orbital number used is the same as
particle number N.

weights, which appear to indicate broadened resonance
with a shorter lifetime. For the hexagonal geometry all 3
ground states have wavevectors related by symmetry, and
depending on size, they exhibit both sharp and broadened
peaks.

In Fig. 6 we present the results for boson MR states
at ν= 1. For this case we have also calculated I−(ω) on a
disc; see Fig. 7. The results are consistent with those ob-
tained on the torus, although the graviton peak appears
sharper. Note that on a disc subtleties associated with
the 3-fold degeneracy and differences between even and
odd particle number cases do not exist, which may be con-
tributing factors to better quality data.

As seen by the size of the weights in these figures the
noise level increases considerably in the 3-body case and
is worse for fermions. A similar trend was observed for
the Laughlin states as noted earlier. Nevertheless, the
graviton peaks do stand out against the background noise.

Experimental Observability and Future Work – In Ref.
[20] it was suggested that graviton will show up as
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a sharp resonance peak in the absorption spectrum of
acoustic wave propagating perpendicular to the 2DEG,
which is an analog of the gravitational wave. Our nu-
merical results support this, as the spectral functions cal-
culated here are those describing the coupling between
acoustic waves and 2DEG. Such experiments have yet to
be performed. More recently it was argued that the gravi-
ton will dominate quench dynamics in a FQH liquid[24].
As discussed above we identify the resonance peak in the
inelastic light scattering at ν= 1/3[26] as due to the gravi-
ton. To gain a more detailed understanding we need to
calculate the appropriate spectral function for such pro-
cesses. As pointed out previously[18] the chirality of the
graviton can be revealed through the polarization of the
light in a Raman process. Here we are able to make a
much more specific prediction: In order to excite the chi-
ral graviton with angular momentum −2, the incoming
light needs to be circularly polarized to have angular mo-
mentum −1, while the (Raman or inelastically) scattered
light will have the opposite polarization and have angu-
lar momentum +1, thus transferring a net angular mo-
mentum −2 to the 2DEG. In a very recent experimental
work[27], inelastic light scattering was performed on the
second Landau level states. We tentatively attribute the
sharp resonance at ν = 7/3 (which is termed a new plas-
mon) to the graviton, similar to that at ν = 1/3[28]; the
much broadened peak at ν = 5/2 is consistent with the
broadening we found in our calculations for the MR state.
But much more detailed studies using interactions and
operators appropriate to the second Landau level, which
involve a more complicated form factor, are needed. We
leave these and other details to future work.

In summary, we have found a clear signature of a chi-
ral graviton mode for both Laughlin and MR states, and
particularly for the ground state of the Coulomb inter-
action at ν = 1/3. In all cases of torus studies the total
weights, the bulk of which constitute the graviton reso-
nance, scales linearly with system size. Our results are
consistent with the inelastic light scattering experiment
of Pinczuk et. al. that sees a resonance with zero momen-
tum.

We thank Zlatko Papic for helpful comments. This work
was supported by DOE grant No. DE-SC0002140.
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