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We study the ground states of crystals on spherical surfaces. These ground states consist of pos-
itive disclination defects in structures spanning from flat and weakly-curved caps to closed shells.
Comparing two continuum theories and one discrete-lattice simulation, we first investigate the tran-
sition between defect-free caps to single-disclination ground states and show it to be continuous and
symmetry breaking. Further, we show that ground states adopt icosahedral subgroup symmetries
across the full range of curvatures, even far from the closure of complete shells. While superficially
similar to other models of 2D “jellium” (e.g. superconducting disks and 2D Wigner crystals), the
interplay between the free edge of caps and the non-Euclidean geometry of its embedding leads to
non trivial ground state behaviors, without counterpart in planar jellium models.

Spherical crystals are elementary models of geomet-
ric frustration in materials, with broad realizations from
fullerenes and protein cages to coated droplets and solid-
domains in multi-component lipid vesicles [1–9]. The
long-standing problem of finding the ground state of
N particles covering the sphere, known as the general-
ized Thompson problem [10, 11], derives its complexity
from the conflict between equi-triangular order and non-
zero (positive) Gaussian curvature [12–15]. For closed
shells, topology dictates the total charge of disclinations
(i.e. sites deviating from six-fold coordination) to be∑nd

i=1 qi = 12, which for the simplest case of only 5-
fold defects (qi = +1) constrains the number of discli-
nations to nd = 12 [14, 16, 17]. Considerable progress
has been made by optimizing, classifying and rational-
izing the patterns of defects of closed shells [11, 18–20].
In contrast, the defect ground states of partially-closed
crystalline shells, or crystalline caps, that span the gap
between defect-free planar crystals and closed shells, re-
main unresolved [21–24].

Unlike closed shells, the number of defects in the
interior of crystalline caps is not topologically con-
strained. Disclinations can be created and destroyed at
the free boundary of the cap, adjusting number in accor-
dance with energetic considerations deriving from elastic
screening by curvature-induced stresses [6, 25–28]. In this
vein, ground states of crystalline caps may be described
by a generalized jellium (GJ) model, in which disclina-
tions act as point sources of elastic stress in a background
of continuous “neutralizing charge” deriving from Gaus-
sian curvature [12]. While the most familiar examples of
GJ describe bulk phases like the Wigner crystal [29, 30]
or Abrikosov lattice of type-II superconductors [31–33],
many scenarios are described by finite domains of homo-

geneously charged backgrounds punctuated by a finite
number of neutralizing point or line charges. For exam-
ple, under an increasing magnetic field, the ground state
wave function of 2D superconducting discs exhibit a com-
plex sequence of transitions in the number and symmetry
of vortices [32, 33], deriving from the incommensurability
of the net applied flux with the quantized flux per vortex.

Although superficially similar to planar GJ models,
crystalline caps are distinguished by their non-Euclidean
(elliptic) geometry which alters the relationship between
shape and length of the free boundary to the cap area.
The effect of free boundaries can be thought in terms of
“virtual” disclination charge, induced by vanishing elas-
tic stress at the free cap edge. Because virtual charges
also partially screen defect-induced stress, the optimal
number of defects does not simply derive from the often
invoked “neutrality condition” between Gaussian curva-
ture and disclination charge [6]. In this paper, we de-
scribe the spectrum of defect ground states of crystalline
caps using a combination of continuum elasticity theory
and simulation models. We show that geometrically non-
linear effects at the free edges give rise to a novel continu-
ous transition from the defect-free interiors to a trapped

FIG. 1. Stress map in a crystalline cap with an off-center
5-fold disclination located at r = 0.6W from Eq. 4 (left) and
covariant theory, Eq. 2 (right).
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central disclination as well as the soft, near-edge trap-
ping of low-energy defects. This latter mechanism leads
to a non-trivial sequence of defect ground states, which is
characterized by a non-monotonic dependence of number
of interior defects on the integrated Gaussian curvature,
or sphere coverage, of the cap. Finally, we show that
the non-Euclidean embedding of the GJ problem on the
cap is essential for the emergence of defect in ground
states with symmetries commensurate with the icosahe-
dral symmetry of closed shells (e.g. the Thompson prob-
lem [19]).

We consider a hexagonal crystal on a sphere of radiusR
extending a radial distanceW = θcR from its center to its
free edge, see Fig. 1 and S7. While brittle crystallization
on spheres may give rise to elastic instabilities of the
boundary shape [25, 34–36], here we consider the limit
of large edge energy [37], where the crystal boundary
remains axisymmetric. Such conditions are realized both
in growth pathways of nanocrystalline shells [4, 16, 24,
38] as well as crystalline “patch” domains, in fluid-solid
phase separated vesicles [8, 9]. Furthermore, we restrict
our attention to ground states that possess only qi = +1
(five-fold) disclinations in an otherwise hexagonal bulk
order, neglecting the possibilities of dislocations chains
or “scars” that become energetically favorable when the
lattice spacing a becomes sufficiently small compared to
W [6, 14, 21].

The elastic energy takes the form

F =
1

2Y

∫
d2x
√
g (∆χ)

2
, (1)

where
√
g is the metric induced in the spherical cap and

χ is the Airy stress function, which encodes the elas-
tic intra-crystal stress (see SI Eqs. (S9-S11)), and satis-
fies [14]

1

Y
∆2χ(x) = s(x)−K(x), (2)

where K(x) is the Gaussian curvature, ∆ =
1√
g∂i(
√
ggij∂j) is the Laplacian on a 2D surface with

metric gij and

s(x) =
π

3
√
g

nd∑
α=1

qαδ(x− xα) (3)

is the disclination density, composed of nd disclinations
possessing qα = +1, the topological charge per single 5-
fold defect (i.e. with wedge angle πqα/3 per defect). The
effect of the free boundary motion is captured by impos-
ing vanishing normal stress at the cap edge on solutions
for χ. Strictly speaking, caps are topologically equiva-
lent to the disk until the point of closure, which requires
a fixed balance between disclinations in the bulk and on
the boundary (i.e. creation of an interior site with only
five bonds requires decreasing the net number of 3-bond
edge sites) [17]. Notwithstanding this necessity of such

“edge disclinations”, stress screening by the free bound-
ary implies that the elastic effect of defects vanishes as
they approach the boundary. Hence, energetics are sen-
sitive only to interior defects.

The elastic energy of multi-disclination configurations
in caps were previously computed [39] for the so-called
Föppl ván Kárman (FvK) limit [27, 28], strictly justified
in the limit of small-slopes [40]. The FvK limit corre-
sponds to approximating the metric gij to be planar in
Laplacian while retaining K(x) = 1/R2 as a homoge-
neous source for Airy stress on the right hand side of
Eq. (2). While the FvK theory is tractable for axisym-
metric caps with arbitrary defect arrangements [23, 41],
the small-slope limit (i.e. θc � 1) is not satisfied for
nearly all of curvatures where defects are energetically
favored. Indeed, as we show below, this approximation
leads to both qualitative and qualitative errors in the
ground state, making accurate predictions for the full
range of curvature, from flat- to closed-shells, inaccessible
to the FvK theory. Recently, the fully covariant elasticity
theory of caps has been developed [24, 42], building from
elements in the theory of incompatible elasticity [43, 44],
and more crucially, allowing for the computation of the
energy of arbitrarily complex, multi-defect configurations
(See SI). This approach, which hereon we will refer to
as LF (Lagrange Formalism) [42], captures the full ge-
ometric non-linearity of the cap shape through incorpo-
ration of the spherical metric in the deformed state (i.e.
grr = 1, grφ = 0, gφφ = R2 sin2(r/R)) while evaluating
the Laplacian and area integral in Eq. (1). We note
that the LF theory neglects higher-order contributions
to in-plane strains deriving from disclinations (beyond
s2) [42]. While this approximation slightly modifies the
near-field defect stresses, the LF theory captures the full
non-linearity of the spherical embedding and is otherwise
tractable for comparing a spectrum of putative defect
ground states, of variable number, symmetry and posi-
tion.

In the context of the GJ models, the FvK model is
the biharmonic analog of the 2D “electrostatic” theory
of superconducting disks, that is, generalized by the
longer-range interactions between monopoles in the bi-
harmonic theory (i.e. interactions grow with separation r
as ∼ r2 ln r, in comparison to ln r for 2D Coulomb [45]).
In comparison, the LF theory embeds the “biharmonic
electrostatics” problem in a non-Euclidean geometry, via
the incorporation of spherical Laplacian and metrics in
Eqs. (1)-(3). The effect of the reduced geodesic separa-
tion between disclinations embedded on spheres, in com-
bination with reduction of the perimeter to domain size
ratio for caps relative to disks of equal geodesic radius
– both captured in the covariant theory – qualitatively
alters disclinations energetics.

The accuracy of both continuum elastic models can be
tested by comparison to simulations of the bead-spring
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model introduced by Nelson and Seung (NS) [46]

ENS =
k

2

∑
〈i,j〉

(|ri − rj | − a)
2
, (4)

which consists of a triangular network of nearest neigh-
bor springs of rest length a and spring constant k. As
described in the SI (see Supplemental software), con-
figurations possessing up to nd = 0, 1, 2 or 3 five-fold
disclinations are constructed by introducing multiple 60◦

Volterra cuts [27, 47]. Figure 1 illustrates excellent agree-
ment between the stress computed from the LF and sim-
ulation of a cap with a single off-center disclination, see
SI for the details.

We first describe the elementary transition from the
defect-free ground state to the ground state possessing
the first stable internal disclination, with q = +1. For
the FvK theory the elastic energy (per unit area) of the
single-disclination cap is a function of aperture angle θc =
W/R, off-center defect position r and disclination charge
q [28].

EFvK

Y A
=

θ4c
384

+
1

96

(q2
3
− qθ2c

2

)[
1− (r/W )2

]2
, (5)

where the first term derives from curvature-generated
stress, the second, from the elastic self-energy of the
disclination and the third, from the mutual elastic screen-
ing of the curvature and disclinations stress [48]. The
expression for the elastic energy for the covariant energy,
ELF, is more complex as shown in the SI and described
in ref. [42] but reduces to eq. (5) in the small-curvature
limit, θc � 1.

Because the self-energy and defect-curvature interac-
tions exhibit exactly the same r-dependence in the FvK
theory, this model predicts a simple 1st-order transition
from the defect-expelled state (minimum at r∗ →W ) for
θc < θ∗ to the defect-centered state (minimum at r∗ = 0)
for θc > θ∗ at a critical cap angle θ∗ =

√
2/3 ≈ 0.816,

see Fig. 2. Note that a standard heuristic argument [6]
considers the cap angle, θn, at which integrated Gaus-
sian curvature “neutralizes” single five-fold defects (i.e.
when

∫
dA s(x) =

∫
dA K(x) yields cap angle θn =

arccos(5/6) ' 0.59. This “neutrality” angle falls well be-
low the prediction for θ∗, indicating that the cap requires
significant “overcharging” by curvature-induced stress to
overcome the self-energy of the monopole disclination.

Figure 2 illustrates the elastic energy vs. defect po-
sition predicted by the (covariant) LF theory, where it
is found that the first disclination emerges continuously
from the boundary, starting approximately at θ ' 0.795
reaching the center of the disk (r∗ = 0) at θ ' 0.83, ex-
hibiting a range of off-center defect equilibria 0 < r∗ < W
in this narrow curvature window[49].

The distinct first- vs. second-order transitions pre-
dicted by the respective FvK and LF theories highlights
the impact of the non-Euclidean embedding on the cap
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FIG. 2. Energy density vs. the location of a disclination for dif-
ferent cap sizes. The red dots indicate the location of disclination
that minimizes the energy density. Based on FvK, there is a first
order transition from the edge to the center between θ = 0.795 and
θ = 0.83. However, there is a second order (smooth) transition
from the edge to the center according to covariant theory.

elasticity, even at fairly modest curvatures (i.e. well be-
fore the hemispherical geometry). While the FvK theory
predicts the self-energy and defect-curvature interactions
to precisely balance at the critical curvature, the appear-
ance of stable off-center equilibrium for disclinations in
the covariant theory can be associated with the imbal-
ance between these two competing effects. Figure S2
plots the relative magnitudes of these terms, showing
that i) the defect self-energy is relatively depressed, while
ii) the defect-curvature is enhanced, as disclinations ap-
proach the free edge of the cap in the covariant theory
relative to FvK. As discussed in more detail in SI Sec.
I.C, the near-edge enhancement of curvature-generated
attractions can be associated from the geometrically-
nonlinear edge compression, which grows faster than the
small-slope (quadratic) approximation in FvK theory.
On the other hand, the weakening of the repulsive self-
energy is associated with the smaller geodesic curvature
of the spherical cap (LF) edge compared to a planar
disk (FvK), which amplifies the edge screening of defect
stresses. These two geometric effects conspire to create
“soft traps”, stabilizing off-center defect equilibria.

We note that the simulation model (Fig. S5b) shows
a transition from defect-free to centered-disclination
ground state at a cap angle quite close to both continuum
calculations, θ∗ ' 0.84. However, discreteness effects as-
sociated with the finite core size (zone of anharmonic
strain) and non-circularity of the free edge obscure reso-
lution on the near-edge elastic binding of single defects.

We now consider the evolution of cap ground states
from nearly-flat (θc . 1) to closed shells (θc → π). Pre-
vious considerations of the Thompson problem and its
variants [17, 19] point towards icosahedral defect config-
urations as ground states in closed spheres. Yet, it re-
mains unclear whether, and at what point, ground states
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FIG. 3. Comparison of ground state energy and defects number in FvK vs. LF. The colorful and dark gray lines correspond to the ground
states obtained from LF and FvK theories. Only solid lines indicate the defect configurations follow IO symmetry. (a) Number of defects
as a function of the growing cap size θc. The dot-dashed line denotes to the topological charge neutrality condition. (b) Ground state
energy as a function of cap size. The inset compares the ground state energy in simulation (dots) to LF (solid lines) and FvK (gray lines).
(c) Stress distribution of the icosahedral subgroups emergent as the ground states in covariant theory.

of incomplete caps conform to this symmetry. Thus, we
compare the elastic energy of two basic classes of discli-
nation arrangements: first, patterns possessing subgroup
symmetries of icosahedron (IO), as illustrated in a stere-
ographic projection in Fig. S10; and second, patterns
composed of concentric n-fold symmetric rings of defects
with composite symmetries listed in Table S1. For each
configuration, energy is minimized with respect to the
arc-radius of concentric rings of defects, retaining fixed
azimuthal spacing between defects within each ring (see
Supplemental software), and the rotation angle between
concentric rings. For example, a (2,4) configuration is
composed of 2 defects in the first ring and 4 defects in
the second, in both cases evenly distributed. The elastic
energy is then minimized with respect to the arc radius of
two rings r1, r2 and the rotation (phase) angle φ between
the rings.

We plot the results in terms of the number of interior
disclinations and energy density of ground state configu-
rations in Fig. 3 A and B respectively, for both the FvK
(black) and LF (color) elastic theories. Since their elastic
energy contributions become arbitrarily small as defects
approach the cap boundary, we introduce a cut-off ra-
dius of 0.95W , beyond which we count defects to be at
the boundary of the crystal and not in the bulk. SI Fig.
S9 shows that even large changes in this cut-off criterion
lead to minor changes in the overall ground state land-
scape.

The defect number of LF ground states increases
monotonically, with few exceptions (e.g. (2, 2) and (3, 3)
following (2) and (3), respectively, due to the weak,
near-edge defect traps) and always remains below the
condition of topological charge neutrality (i.e. a num-
ber of internal defects whose total defect angle is equal

to the integrated Gaussian curvature), with the calcu-
lation converging to the topologically correct condition
of twelve defects with icosahedron symmetry for closed
caps (θc → π). In contrast, for θc & 2 the ground
states of the FvK model begin to greatly exceed the
neutrality condition, eventually growing to +19 discli-
nations in the complete shell, far in excess of the +12 re-
quired on a closed sphere. In terms of the energy density
(Fig. 3B), both theories show a similar crossover from
the ∼ θ4c growth of elastic energy for defect-free caps
to the plateau-like series of multi-disclination minima at
large coverage. Beyond the qualitative similarity in the
curvature-dependence of the energy, the ground states
symmetries of the two models differ substantially. As
illustrated in Fig. 3C, all but two ground states of the
LF possess quasi-icosahedral symmetry. In contrast, as
shown in SI Fig. S8, ground states of the FvK theory
with nd > 3 break icosahedral symmetry (with the sole
exception of a narrow range of stable (3, 3)) exhibiting
higher-fold concentric-ring defect patterns that are also
characteristic of planar vortex packings in superconduct-
ing ground states [32].

In summary, the detailed comparison of the widely-
used elastic plate theory (FvK), a covariant continuum
elasticity theory (LF) and discrete lattice model (NS)
of crystalline caps reveal that qualitative features of the
ground state structure and energetics derive from the
non-Euclidean embedding of the elastic energy of caps,
and crucially, their free boundaries. Beyond modifi-
cation of the transition from defect-free and defective
caps at small curvature, we find that the spherical em-
bedding of this generallized jellium impacts the ground
state symmetries, even at cap curvatures far from clo-
sure. Whereas the FvK model (i.e. “biharmonic, pla-
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nar jellium”) predicts defect numbers and arrangements
that departing wildly from structures predicted in closed
shells (i.e. nd(θc → π) � 12), the ground states co-
variant LF model (i.e. “biharmonic, spherical jellium”)
rather smoothly interpolate to the icosahedral arrange-
ments of twelve q = +1 defects for θc → π. This
shows that topological constraint that applies for closed
shells (i.e.

∑nd

i=1 qi = 12) is not strictly necessary for
the stabilty of icosahedral defect arrangements; such
ground states can emerge purely from the (topologically-
unconstrained) energetics of multi-defect arrangements
on incomplete shells, but only when embedded properly
in a spherical geometry.

A recent study showed that nearly IO arrangements
emerge from non-equilibrium models of crystalline shell
growth in which defects can only form at the free edge
of growing cap [24]. The present results show that these
kinetically-accessible structures are, indeed, remarkably
close to the ground states of axisymmetric, and partially-
closed caps, over the full range of curvature (see discus-
sion in SI). More broadly, the evolution of ground state
structure from flat to closed shells forms the basis for ad-
dressing more complex models of shell structure. For ex-
ample, models describing decoration of isolated positive
disclinations with excess 5-7 dislocation pairs in large-N
crystals as well as anisotropic boundary shape in the limit
of low edge energy to modulus ratios [21, 22, 25, 35, 36],
have until now, only addressed the “small-slope” limits
accessible via FvK theory. The present results argue that
capturing the full geometric non-linearity of defect elas-
ticity will be equally essential for understanding more
complex partial-shell morphologies, even at qualitative
level, far from the weakly-curved regime.
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[13] M. Kléman, Advances in Physics 38, 605 (1989).
[14] M. J. Bowick, D. R. Nelson, and A. Travesset, Phys.

Rev. B 62, 8738 (2000).
[15] V. Vitelli, J. B. Lucks, and D. R. Nelson, Proceedings

of the National Academy of Sciences 103, 12323 (2006).
[16] J. Wagner and R. Zandi, Biophysical journal 109, 956

(2015).
[17] M. J. Bowick and L. Giomi, Advances in Physics 58, 449

(2009).
[18] E. L. Altschuler, T. J. Williams, E. R. Ratner, F. Dowla,

and F. Wooten, Phys. Rev. Lett. 72, 2671 (1994).
[19] M. Bowick, A. Cacciuto, D. R. Nelson, and A. Travesset,

Phys. Rev. Lett. 89, 185502 (2002).
[20] D. J. Wales, H. McKay, and E. L. Altschuler, Phys. Rev.

B 79, 224115 (2009).
[21] A. Azadi and G. M. Grason, Phys. Rev. Lett. 112, 225502

(2014).
[22] A. Azadi and G. M. Grason, Physical Review E 94,

013003 (2016).
[23] M. Castelnovo, Phys. Rev. E 95, 052405 (2017).
[24] S. Li, P. Roy, A. Travesset, and R. Zandi, Proceedings

of the National Academy of Sciences 115, 10971 (2018).
[25] S. Schneider and G. Gompper, EPL (Europhysics Let-

ters) 70, 136 (2005).
[26] L. Giomi and M. Bowick, Physical Review B 76, 054106

(2007).
[27] G. M. Grason, Physical Review Letters 105, 045502

(2010).
[28] G. M. Grason, Physical Review E 85, 031603 (2012).
[29] L. Bonsall and A. A. Maradudin, Physical Review B 15,

1959 (1977).
[30] D. S. Fisher, B. I. Halperin, and R. Morf, Physical Re-

view B 20, 4692 (1979).
[31] A. K. Geim, I. V. Grigorieva, S. V. Dubonos, J. G. S.

Lok, J. C. Maan, A. E. Filippov, and P. F. M., Nature
390, 259262 (1997).

[32] B. J. Baelus, F. M. Peeters, and V. A. Schweigert, Phys-
ical Review B 63, 144517 (2001).

[33] V. A. Schweigert, F. M. Peeters, and P. S. Deo, Physical
Review Letters 91, 2783 (1998).

[34] A. Y. Morozov and R. F. Bruinsma, Physical Review E
81, 041925 (2010).

[35] G. Meng, J. Paulose, D. R. Nelson, and V. N. Manoha-
ran, Science 343, 634 (2014).

[36] D. M. Hall and G. M. Grason, Interface Focus 7,
20160140 (2017).

[37] We expect this boundary shape instability is suppressed
in the limit of edge energies much larger than ∼
Y θ4cW [34, 36, 38].

[38] R. Zandi, P. van der Schoot, D. Reguera, W. Kegel, and
H. Reiss, Biophysical Journal 90, 1939 (2006).

[39] The derivations for FvK in axisymmetric 2D crystals



6

were originally applied to twisted columnar phases, the
elastic energy of which is identical to crystalline caps in
the small-slope, or low-twist, regimes.

[40] L. Landau and E. Lifshitz, Theory of elasticity, Vol. 7
(Butterworth-Heinemann, Oxford, 1986).

[41] G. M. Grason, J. Chem. Phys. 145, 110901 (2016).
[42] S. Li, R. Zandi, and A. Travesset, Phys. Rev. E 99,

063005 (2019).
[43] E. Efrati, E. Sharon, and R. Kupferman, Journal of the

Mechanics and Physics of Solids 57, 762 (2009).
[44] M. Moshe, E. Sharon, and R. Kupferman, Phys. Rev. E

92, 062403 (2015).
[45] A. E. Romanov, physica status solidi (a) 63, 383 (1981).

[46] H. S. Seung and D. R. Nelson, Phys. Rev. A 38, 1005
(1988).

[47] A. Travesset, Physical Review B 68, 1 (2003).
[48] Note that we neglect in this analysis the core energy of

disclinations, which is expected on dimensional grounds
to be comparable to ∼ Y a2 and hence much smaller than
the far-field, elastic energies of disclinations, ∼ YW 2.

[49] We point out that in Ref. [24], the appearance of the first
defect was reported to be at θ ' 0.66 instead of 0.795
due to numerical error introduced by summing over not
enough modes in the multipole expansion of self-energy.
See Fig S1.


