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In hierarchical models of structure formation, the first galaxies form in low mass dark matter
potential wells, probing the behavior of dark matter on kiloparsec (kpc) scales. Even though these
objects are below detection threshold of current telescopes, future missions will open an observational
window into this emergent world. In this Letter we investigate how the first galaxies are assembled
in a ‘fuzzy’ dark matter (FDM) cosmology where dark matter is an ultralight ∼ 10−22 eV boson
and the primordial stars are expected to form along dense dark matter filaments. Using a first-of-
its-kind cosmological hydrodynamical simulation, we explore the interplay between baryonic physics
and unique wavelike features inherent to FDM. In our simulation, the dark matter filaments show
coherent interference patterns on the boson de Broglie scale and develop cylindrical soliton-like
cores which are unstable under gravity and collapse into kpc-scale spherical solitons. Features of
the dark matter distribution are largely unaffected by the baryonic feedback. On the contrary,
the distributions of gas and stars, which do form along the entire filament, exhibit central cores
imprinted by dark matter – a smoking gun signature of FDM.

Introduction. The near-century-year-old dark matter
problem is one of the most intriguing mysteries in mod-
ern physics. We do not know the nature of 84 percent of
matter in the Universe, yet it is thought to govern cos-
mic structure and hold galaxies and clusters together [1].
Observations show that on scales larger than a few mega-
parsecs (Mpc), the behavior of dark matter is consistent
with it being collisionless [2, 3]. However, on scales at and
below the size of dwarf galaxies (few kpc) dark matter is
not well constrained [4], allowing for many plausible the-
ories with exotic small-scale physics and particle masses
spanning over 30 orders of magnitude [5–10]. The first
star-forming regions in the Universe – more susceptible
to dark matter’s small-scale behavior than much heavier
present-day galaxies – will be revealed by next generation
space telescopes and offer a unique probe of the nature
of this elusive component.

A leading hypothesis for the dark matter ‘back-bone’
of the Universe is cold dark matter (CDM), such as a
thermally-produced weakly interacting massive particle
(WIMP) of mass � eV. CDM is collisionless and Jeans
unstable to forming structure on all astrophysical scales
down to a particle physics model-dependent small-scale
cutoff (e.g. ∼ Earth mass / 10−4 kpc for a 100 GeV

WIMP [9]) Apart from a set of “small-scale controver-
sies” [11, 12], including the “cusp versus core” problem
where simulated cuspy halos of galaxies contradict cored
observations which may be explained with baryonic ef-
fects, CDM has been very successful at describing the
observed large-scale structure [2, 3]. However, direct and
indirect dark matter searches have thus far failed to de-
tect such particles [13]. As a result, there is increased fo-
cus on alternative viable scenarios, including warm dark
matter (WDM), which is often associated with fermions
of particle mass of a few keV (typically treated as col-
lisionless), Peccei-Quinn axions [14] which are bosons of
mass ∼ 10−5–10−3 eV, and the ultralight FDM of mass
m ∼ 10−22 eV, which is described by a classical scalar
field and exhibits wave phenomena on scales of the de
Broglie wavelength λdB ∼ few× kpc [5–8, 15, 16]. WDM
and FDM both yield smoother structures than CDM
on scales below few kpc, due to either thermal motion
(WDM) [10] or quantum pressure (FDM) [5]. The exis-
tence of dwarf galaxies in dark matter halos with masses
of ∼ 109 times the mass of the sun (M�) in the local Uni-
verse, as well as measurements of the ‘lumpiness’ of the
dark matter distribution, constrain WDM and FDM the-
ories, favoring particle masses above mWDM ∼ 3 keV and
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FIG. 1. Anatomy of a cosmic filament. We show, for CDM, WDM, and FDM cosmologies: (a) the projected dark matter
distribution in the simulation domain at redshift z = 5.5; (b) projections of dark matter, gas, and stars in a filament; and (c)
slices of the dark matter through a filament. In CDM the dark matter fragments into subhalos on all scales. WDM exhibits
rich caustic structures. FDM has interference patterns at the scales of the de Broglie wavelength, which regularize caustic
singularities. These differences in small-scale structure will help constrain the elusive nature of dark matter.

m ∼ 10−22 eV respectively [17–19]. The subhalo mass
function may imply even higher masses [20]. However,
for FDM these constraints can only be used as guide-
lines, being based on simulations that ignore the impact
of wave effects on baryons.

The first objects in the Universe offer a unique way to
tighten the observational constraints. Compared to the
local Universe, in which galaxies in 1011 M� dark mat-
ter halos are typical, an early CDM universe (at redshift
z ∼ 30, i.e., 108 years after the Big Bang) is populated by
much smaller nearly-spherical halos of ∼ 105 − 107 M�
in which proto-galaxies are born [21]. In contrast, WDM
first star-forming structures form later and are filamen-
tary due to the initial suppression of the dark matter
power spectrum by particle free-streaming [22, 23]. Com-
pared to WDM, wavelike FDM additionally features in-
terference patterns and soliton cores, as is demonstrated
by dark matter-only cosmological simulations [24]. Un-

til now, impact of FDM on star and galaxy formation
has been studied with hydrodynamical simulations that
ignore the wavelike aspects of the dark matter super-
fluid [25]. The first consistent cosmological simulations
of ultralight bosons coupled to the state-of-the-art hy-
drodynamical modeling are presented here and will allow
realistic tests of FDM with existing and upcoming data.

Simulating a ‘fuzzy’ universe. FDM, a scalar boson in
the non-relativistic limit, is described by a complex field
ψ = A exp[−iφ], with amplitude A tied to the dark mat-
ter density ρ ≡ |A|2; and phase φ encoding the velocity
v ≡ (~/m)∇φ, where ~ is the reduced Planck constant.

The Schrödinger-Poisson (SP) equations in an expand-
ing universe govern the evolution of FDM [5]. In physical
coordinates:

i~
(
∂

∂t
+

3

2
H

)
ψ = − ~2

2m
∇2ψ +mV ψ (1)
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FIG. 2. The structure of FDM filaments: collapse of a cylin-
drical filament to a spherical soliton. FDM (blue) radial pro-
files (dark matter — ; gas – – ; stars – ?) are shown through
a cross-section of a filament at z = 5.5 (shown in insert
(a)). (b) The dark matter filament has previously (z = 7)
gone unstable from a cylindrical solution and formed a soli-
ton core (the yellow/red lines are cylindrical/spherical profiles
of Equation 3). Gas traces the dark matter on all scales; while
stars form steeper profiles in the filament ‘spine’, but are still
cored in the center. In contrast, WDM (green) exhibits cuspy
profiles. In CDM (not shown) the filament fragments into
multiple subhalos, so the cross-section profile is ill-defined.
Characteristic power law dependencies are shown with gray
lines.

∇2V = 4πG(ρtot − ρtot) (2)

where H is the Hubble constant, V is the total gravita-
tional potential due to dark matter and baryons, ρtot is
the total density field, ρtot is the average density of the
Universe, and G is the gravitational constant. The equa-
tions approximate the Vlasov-Poisson equations for CDM
in the limit of large boson mass or for high halo masses
[26], which makes the study of low mass first structures
of particular interest because it is where wavelike effects
are expected to be the strongest.

We employ the magneto-hydrodynamics code arepo
[27], which has been previously used to carry out de-
tailed simulations of galaxy formation with CDM (e.g.,
the Illustris-TNG project [3]). Here, we replace CDM
by a FDM formalism via a spectral technique [28], which
evolves the wavefunction in a unitary manner by taking
alternating steps to shift the phases of ψ̂ (the Fourier
transform of ψ) to account for the kinetic operator in the
Schrödinger equation and the phases of ψ itself to account
for the gravitational potential. To verify the method we
have carried out extensive tests of the convergence of the
dark matter power spectrum as a function of resolution

and box size. The method requires fixed spatial resolu-
tion across the simulated box and fixed (rather than hier-
archical) time steps, and, therefore, the wave effects can
only be fully explored in small cosmological volumes (up
to few Mpc on a side). It is complementary to particle-
based methods [29, 30] which can treat larger box sizes at
the cost of not fully-resolving wave interference patterns.
The relevant baryonic physics implemented in arepo
includes sub-grid models for primordial and metal-line
cooling, chemical enrichment, star formation, supernova
feedback via kinetic winds, and instantaneous uniform
reionization at z ∼ 6 [31]. Simulations of FDM were
carried out on the TACC Stampede supercomputer using
3 million CPU core hours. The FDM simulations require
about 20 times more computation time than comparison
CDM/WDM simulations due to the resolution require-
ments.

We simulate a volume of size Lbox = 1.7h−1 Mpc
and assume a boson mass of m = 2.5 × 10−22 eV,
which introduces a cutoff in the initial power spectrum at
Lcutoff ' 1.4h−1 Mpc due to the uncertainty principle.
We evolve the simulation from redshift z = 127 (Uni-
verse age 107 years), where initial conditions are gener-
ated using the publicly available Boltzmann code axion-
CAMB [32], to redshift z = 5.5 (Universe age 109 years),
with the final redshift limited by resolution requirements
that guarantee fully-converged results. The dark mat-
ter spectral resolution is 10243, and the baryon resolu-
tion is 5123 particles (equivalent to the mass resolution
∼ 103 M�). Cosmological parameters, as measured by
the Planck satellite [2], are assumed, with the exception
of σ8, which is boosted from 0.8 to 1.4 to enhance initial
fluctuations and compensate for the small cosmological
volume probed by the simulation (e.g., [33]).

We compare the FDM simulations to those of CDM
and WDM which were run with the resolution of 5123

dark matter particles using the same hydrodynamical
setup as FDM and the same initial perturbations mod-
ulo initial power spectrum shape: CDM has no cutoff,
while FDM and WDM assume the same exponentially-
suppressed initial power spectrum. Particle masses in
FDM and WDM cosmologies can be related by matching
the cutoff scale [16, 25]: the WDM particle mass that
corresponds to our choice of m is mWDM ∼ 1.4 keV.
Our WDM is not an exact classical WDM simulation be-
cause we ignore initial velocity dispersion of WDM parti-
cles. Instead, the WDM case is designed to approximate
‘FDM minus wave effects’ and treats the dark matter as
collisionless, an approximation widely used in cosmology
(e.g., [25]).

First structures in FDM/WDM/CDM. We illustrate
the main conceptual differences between the anatomy of
the first star-forming structures with CDM, WDM, and
FDM in Fig. 1 by showing the dark matter, star, and
gas distributions across a filament. Fig. 2 shows radial
profiles for a cross-section perpendicular to the filament.



4

On large cosmological scales the projected dark mat-
ter density fields look similarly smooth in WDM and
FDM: the initial suppression in power at Lcutoff pre-
vents the formation of halos with masses below M1/2 '
5× 1010 M�

(
m/10−22 eV

)−4/3
[16], and the cosmic web

is dominated by dense filaments, which can fragment
due to a linear instability to form halos [34]. In con-
trast, CDM filaments hierarchically fragment into nearly-
spherical subhalos that are resolved down to the simula-
tion mass resolution.

FDM and WDM strongly differ in their small-scale
structure. In WDM, filaments show sharp caustic fea-
tures in their dark matter distribution (Fig. 1), and the
first structures are cuspy (Fig. 2). WDM is also known to
be susceptible to discreteness noise [35] – i.e., numerical
fragmentation of filaments at late times – due to the lack
of a regularizing force, which is seen to an extent in our
simulations. In contrast, in FDM caustics are regularized
by the uncertainty principle, and structure shows inter-
ference patterns from wave superposition. The quantum
pressure also prevents the artificial numerical fragmenta-
tion seen in WDM. In filaments, the interference remains
coherent due to a limited number of wave velocities from
the initial collapse, and interference minima/maxima are
aligned on scales of few × 100 kpc. Inside halos, the
structure is more complex: waves mimic the multiple
shell-crossing in classical collisionless dynamics. Fluc-
tuating kpc-scale wave interference patterns arise, and,
gravitationally coupled to baryons, may provide dynami-
cal heating and friction and thicken galactic disks [36, 37].
The size of the interference patterns in filaments and ha-
los is a locally varying quantity, which we find can be
estimated from our WDM simulations as the de-Broglie
wavelength λdB = h/(mσ) of the local velocity dispersion
σ of the dark matter particles to within a factor of 2, in
line with theoretical predictions [26].

On scales of order λdB, structures in dense regions can
also be highly nonlinear, showing large differences be-
tween FDM and WDM. The quantum pressure in FDM
can become strong enough to counteract the self-gravity
of the dark matter superfluid. This results in cosmic
structures that are unique to FDM such as a spherical
soliton core with a radius of few kpc at halo centers
[38] versus much denser cusps in CDM [39] and WDM.
WDM, though tracing the FDM filament quite well at
early times and at large radii, instead collapses into a
denser cuspy halo due to the absence of quantum pres-
sure support. If primordial thermal velocities of WDM
(not modeled here) were included, the cusp would eventu-
ally form a∼ 10 pc core by z ∼ 2 (for our halo masses and
effective mWDM particle mass) [40–42], which is signifi-
cantly smaller than the cored structures of FDM formed
on kpc scales.

The smallest soliton mass that can form in a cos-
mological setting as a result of non-linear evolution of

the density field is predicted to be Mmin ' 1.4 ×
107 M�

(
m/10−22 eV

)−3/2
for a boson mass m [16].

Mmin is 3 orders of magnitude below the minimum mass
allowed by the initial power cutoff M1/2, which agrees
well with halos found in our simulations.

We find that, in addition to spherical halos, the cen-
ters of cylindrical filaments may be supported by quan-
tum pressure (a 2D, unstable version of the 3D soliton).
In fact, first non-linear FDM structures seen in our sim-
ulations are cylindrical solitons which are unstable and
evolve into spherical solitons. The spherical soliton in
halo centers and the cylindrical solution in filaments are
well-approximated by:

ρ(r) ' ρ0

[
1 +

{
0.091 spherical
0.127 cylindrical

}
×
(
r

rc

)2
]−8

(3)

where r is a cylindrical coordinate for filaments and
spherical for halos, rc is the core radius and ρ0 is the
central density:

ρ0 ' 1.9× 109

(
10−22 eV

m

)2(
kpc

rc

)4
M�

kpc3 . (4)

The cylindrical filament solution (which we obtained as
a fit to the numerical solution for the ground state of
the SP equations in cylindrical symmetry) is a squeezed
version of the spherical soliton. Fig. 2 (b) shows the
radial density profile of a slice through a FDM filament
at two cosmic times z = 7 and z = 5.5. Initially, the
central filament ‘spine’ is well-modeled by the cylindrical
filament solution. This first structure is highly triaxial
with minor-to-major axis ratio ∼ 0.1. The filament goes
unstable and forms a soliton core of massM ' 2×107 M�
by z = 5.5, near the predicted minimum nonlinear mass
limit Mmin.
Gas and Stars. In standard CDM scenarios baryons

follow dark matter on scales larger than the filtering scale
(the characteristic distance on which pressure acts, e.g.,
[43]), while on smaller scale gas is diffused by pressure.
In our FDM and WDM simulations gas pressure does
not play a role in the initial collapse of baryonic struc-
ture because the filtering scale is below the cutoff scale
of the initial power spectrum. As a result, the dense
FDM/WDM filaments are able to collect gas along the
entire structure, in contrast with the fragmentation seen
in CDM (Fig. 1). In principle, baryons could alter the
central dark matter structure in galaxies through gravita-
tional potential fluctuations [44], but this effect depends
on how extended the star formation history is, and is not
seen in our simulations. We find that inside filaments the
gas profile traces that of dark matter (up to a lower nor-
malization, Fig. 2), and, importantly, in FDM the dark
matter cored-soliton profiles are imprinted in the distri-
butions of gas and stars creating potentially detectable
smoking-gun signatures of FDM.
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First stars form in deep-enough potential wells which
can compensate against pressure and cool gas efficiently.
Even though supernova feedback and photo-heating of
the UV background during reionization may influence
the distribution of gas and stars, the FDM/WDM fil-
aments are dense enough to be entirely lit up by the
first generation of stars even in the presence of sub-grid
models for baryonic feedback. These early star form-
ing filaments – structures potentially detectable by the
James Webb Space Telescope (JWST) – are quite differ-
ent from galaxies we see at later epochs. However, at
lower redshifts gravity will fragment these early struc-
tures and stars will accrete into more spherical objects,
forming familiar-looking galaxies.

The first FDM galaxies are expected to be intrinsically
dimmer than the ones in both WDM and CDM due to
the cored FDM structures and shallower potential wells.
FDM is less efficient in collecting gas and forming stars
both in the filaments and halo centres. Approximately
10% less stellar mass is formed by z = 5.5 compared to
WDM, and ∼ 40% less than CDM (note, however, that
in these simulations we ignore the effect of streaming ve-
locity between dark matter and gas [45] which might af-
fect the reference CDM case delaying star formation in
small halos of 105 − 107 M� by a few million years [46]).
The suppression in the central stellar density may lead to
potentially detectable effects. For instance, inefficient re-
population of the orbits along which stars are tidally dis-
rupted by the central black hole will result in fewer tidal
disruption events (TDEs). High-redshift TDEs might be
observable with next generation transient telescopes if
they generate relativistic jets [47, 48].

Concluding remarks. The first structures that form
in the Universe may give away the physical nature of
dark matter. We have carried out first-of-their-kind cos-
mological simulations of a high-redshift (z ≥ 5.5) uni-
verse with FDM gravitationally coupled to baryons, in-
cluding sub-grid models for star formation, feedback, and
reionization. With these simulations we have highlighted
systematic differences between FDM, WDM and CDM
and explored the interplay between the quantum wave
effects in FDM and baryonic physics in the context of
first galaxy formation.

First galaxies, targets of JWST, would appear filamen-
tary in both WDM and FDM. The dark matter structure
at early times is largely unaffected by the effects of bary-
onic feedback and reionization, while the distribution of
baryons is driven by dark matter even on small scales
(kpc). A unique signature of FDM is flattened central
profiles in the distribution of gas and stars in halos and
filaments, which leads to reduced cosmic star formation.

Our simulations confirm that on large scales, and even
with sub-grid baryonic feedback, the WDM model ap-
proximates FDM fairly well, as has been assumed pre-
viously [18, 25], suggesting that the Lyman-α forest is
a reasonably good tracer of the small-scale dark matter

power spectrum even in the nonlinear regime of structure
formation. The discrepancy between FDM and WDM is
expected to increase at lower redshifts where quantum
pressure wave dispersion acts for longer time. We have
assumed a boson mass m = 2.5 × 10−22 eV, which is in
moderate tension with Lyman-α observations [18, 49] and
the Milky Way subhalo mass function [20], and future
work will test larger boson masses up to m ∼ 10−18 eV
requiring much higher numerical resolution. Such par-
ticles would impact formation of the first star-forming
objects in halos down to 105 M�, affecting observable
properties of high-redshift galaxies while remaining con-
sistent with the local Universe.
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