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We elucidate the relation between out-of-time-order correlators (OTOCs) and quantum phase
transitions via analytically studying the OTOC dynamics in degenerate spectrum. Our method
points to key ingredients to dynamically detect quantum phases via out-of-time-order correlators
for a wide range of quantum phase transitions and explains the existing numerical results in the
literature. We apply our method to a critical model, XXZ model that numerically confirms our
predictions.

Out-of-time-order correlators (OTOCs) [1] probe infor-
mation scrambling in quantum systems of different na-
ture [2–9] and reflect the symmetries [4, 7, 9] or lack
thereof [2, 7, 10] of the underlying Hamiltonian. An
OTOC, unlike a time-ordered four-point (or two-point)
correlator [11], can determine the spatial and temporal
correlations throughout the system, thus giving rise to
a bound on information spread [9, 12, 13]. Through
such bounds and the decay rate of an OTOC, one can
dynamically detect thermal [7–9] and localized phases
[4, 7, 9, 11, 14, 15]. Recently OTOC is numerically ob-
served to be susceptible to also phase transitions either
signaling criticality in a diverging Lyapunov exponent
[16] or showing signatures of symmetry-broken phases in
its saturation value [17]. The latter led to more research
that shows the relation emerging in other forms, e.g. in
excited states [18], or with more experimentally-relevant
platforms and system parameters [19]. The interest in
providing more verification for such an emergent relation
is understandable, not only because the relation points
to a practical potential for OTOC in dynamically prob-
ing quantum criticality, but also the relation is received
as unexpected [17]. It is indeed an intriguing question
how a chaos-detecting and out-of-time ordered correla-
tor that is contributed by presumably all spectrum could
also probe ground state physics. The reasons of this re-
lation remains unknown as well as an answer to whether
the relation is universal. Motivated by these questions,
here, we develop a method on OTOC dynamics to ob-
tain intuition for the emerging relation between quantum
phase transitions and out-of-time-order correlators. Re-
markably it is possible to dynamically decompose OTOC
and show that the ground state physics is the leading or-
der contribution to it under the criteria that our method
provides. This is the origin why OTOC saturation value
could detect the ground state degeneracy. Therefore, we
reach to the conclusion that the OTOC is susceptible to
long-range order, while the quasi-long range order is not
visible to it. Our method provides additional insights re-
garding the relation, e.g. (i) the relation is not restricted
to already-studied models and 1D [17, 19]; (ii) the re-
lation can be extended to include the phase transitions

in other eigenstates [18]. Hence, our theory elucidates
the reasons of this unexpected connection, renders it in-
tuitive and universal with further insights. To verify our
method, we study the dynamics of 1D critical XXZ chain,
where there are Ising and critical XY phases.
Method. Our aim is to be able to come up with an

expression that predicts the saturation value of OTOC
for long times in the spirit of Eigenstate Thermalization
Hypothesis (ETH) [20, 21]. The out-of-time-order corre-
lation function can be defined as

F (t) =
〈
W †(t)V †W (t)V

〉
, (1)

where V and W are local operators and the expecta-
tion value is over an initial state |ψ(0)〉. This initial
state could be chosen as the ground state [6, 17], or
a random Haar-distributed state [9, 12] to approximate
an equiprobable state I in Eq. (1) [22–24]. Eventually,
the original definition that is the commutator growth

−Tr
(

exp[−βH]
Z [W (t), V ]

2
)

[10] could be re-expressed in

terms of the OTOC of operators W and V with an ini-
tial state at the inverse temperature β. Therefore we
can probe the information scrambling through OTOCs
[6, 8, 9, 25, 26].

Given |ψ(t)〉 =
∑
α cαe

−iEαt |ψα〉, where |ψα〉 are
eigenstates of the Hamiltonian with the associated eigen-
values Eα, we define a modified initial state |ψ′(0)〉 =
V |ψ(0)〉 and have |ψ′(t)〉 =

∑
β bβe

−iEβt |ψβ〉. Then the
OTOC, Eq. (1), can be recast to a fidelity measure of
3-point function, and with the help of completeness rela-
tion

∑
γ |ψγ〉 〈ψγ | = I becomes

F (t) =
∑

α,β,γ,γ′

c∗αbβe
−i(Eβ−Eα+Eγ−Eγ′ )tW †αγV

†
γγ′Wγ′β ,

where 〈ψα|W |ψγ〉 = Wαγ are EEVs (eigenstate expec-
tation values) [27]. Now one can derive the saturation
value for long times as well as dynamical features, such
as revival timescales in integrable Hamiltonians [28].

We study the saturation value in long times, since this
value is expected to contain the signature of quantum
phases. For long enough times, equilibration in OTOC
dynamics can be obtained only when the phase deco-
heres. Then the equilibration value can be obtained
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by requesting Eβ − Eα + Eγ − Eγ′ = 0. This condi-
tion can be satisfied with four different scenarios: (i)
Eα = Eβ and Eγ = Eγ′ ; (ii) Eα = Eγ and Eβ = Eγ′ ;
(iii) Eα = Eβ = Eγ = Eγ′ , which is contained both
in (i) and (ii); (iv) Eβ − Eα + Eγ − Eγ′ = 0 with
Eβ 6= Eα 6= Eγ 6= Eγ′ . If a non-degenerate spectrum
is assumed, i.e. Eα = Eβ implies α = β, the OTOC
reduces to,

Ft→∞=
∑
α,γ

c∗αbα|Wαγ |2V †γγ +
∑
α,β

c∗αbβW
†
ααV

†
αβWββ (2)

−
∑
α

c∗αbα|Wαα|2V †αα +
∑

α6=β 6=γ 6=γ′

c∗αbβW
†
αγV

†
γγ′Wγ′β ,

with four terms corresponding to four conditions (i)-(iv),
respectively. We note that writing OTOC as in Eq. 2
proved to be useful previously to understand the quan-
tum chaotic systems better, e.g. in chaotic spin chains

with conserved quantities that also obey ETH, decay to
zero is not supposed to be exponential, but inverse poly-
nomial in system size [29] and OTOCs capture eigenstate
correlations that ETH cannot [30]. These correlations
can readily be seen in the first, second and the fourth
terms of Eq. 2. See Supplement S5 [24] for some re-
marks that immediately follow from Eq. 2 about systems
with non-degenerate chaotic spectra. Now we are go-
ing to generalize Eq. (2) to a more generic form, which
allows degeneracy in the energy spectra, because a quan-
tum phase transition usually involves energy degeneracy,
e.g. degeneracy from spontaneous symmetry breaking or
other sources [31]. We group all eigenstates of the Hamil-
tonian into degenerate sets labeled by θ, and each state
in its corresponding set is denoted by α for an eigenstate
ψ[θ,α]. The OTOC can be reorganized with the new no-
tation, which is one main result of this Letter,

F (t→∞)=
∑
θθ′

∑
αβγγ′

c∗[θ,α]

(
b[θ,β]W

†
[θ,α][θ′,γ]V

†
[θ′,γ][θ′,γ′]W[θ′,γ′][θ,β] + b[θ′,β]W

†
[θ,α][θ,γ]V

†
[θ,γ][θ′,γ′]W[θ′,γ′][θ′,β]

)
(3)

+
∑
αβγγ′

−∑
θ

c∗[θ,α]b[θ,β]W
†
[θ,α][θ,γ]V

†
[θ,γ][θ,γ′]W[θ,γ′][θ,β] +

∑
θ 6=θ′ 6=φ6=φ′

c∗[θ,α]b[θ′,β]W
†
[θ,α][φ,γ]V

†
[φ,γ][φ′,γ′]W[φ′,γ′][θ′,β]

 .

Here, θ, θ′, φ, φ′ denote degenerate sets while α, β, γ, γ′

denote quantum states in their corresponding sets.
Eq. (3) can predict the saturation value of OTOC ac-
curately if the OTOC saturates at a finite time. If
the OTOC does not saturate or shows transient effects,
Eq. (3) still predicts the time-average of OTOC signal
F̄ = 1/T

∫
dtF (t) over a time interval T with sufficient

accuracy. In this sense, Eq. (3) is not limited to long-time
dynamics t→∞ [24].

We look for the criteria that the ground state subspace
contribution is leading order in the OTOC saturation
value Eq. (3). For this, we first set W = V as the order
parameter operator in Eq. (3) for convenience. Then we
expand the coefficients b[θ,β] =

∑
κ,τ W[θ,β][κ,τ ]c[κ,τ ] in

Eq. (3) by using the initial state. If (i) the initial state
is set to the state where the phase transition is expected
to happen, e.g. the ground state(s) c[1,1] = 1; and (ii) we
apply an ansatz on the matrix elements of the operator
projected on this state, e.g. |W[1,α][θ,β]|2 � 1, where
θ 6= 1 is a different energy subspace than the subspace of
the ground state(s), we observe the following dynamical
decomposition:

F (t→∞) = Fgs(t→∞) + Fex(t→∞). (4)

Here Fgs(t → ∞) is the ground subspace contribution,
whereas the Fex(t → ∞) is the contribution of higher
energy excitations. The latter is a correction to the

ground-state physics in the OTOC, when the criteria are
satisfied. The assumption on the initial state sets the
scrambling discussed in the rest of the paper to effectively
zero temperature. Whereas the operator ansatz becomes
even more specific for the phase of interest. If there is a
symmetry-broken long-range order to capture, the fluc-
tuations between the matrix elements of the operator are
suppressed in the ground state subspace, meaning there
is at least a pair of matrix elements accumulating the
order → |W[1,α][1,β]|2 ∼ O (1). This modifies the opera-
tor ansatz as |W[1,α][1,β]|2 � |W[1,γ][θ,γ′]|2 for the ordered
phase. Thus, we derive the expression for Fgs(t→∞) in
the ordered phase as,

Fgs(t→∞)∼ (5)∑
β,γ,γ′ W[1,1][1,γ]W[1,γ][1,γ′]W[1,γ′][1,β]W[1,β][1,1],

while the operator ansatz simultaneously implies that
the OTOC is dominated by the ground state physics,
Fgs � Fex in the ordered phase. On the other hand,
the fluctuations between the matrix elements of the
operator are maximal in a disordered phase, implying
W[1,α][1,β] ∼ 0 for all in the ground state subspace which
results in Fgs(t→∞) ∼ 0. Therefore, the OTOC is dom-
inated by the correction terms that are contributed by
the excitations in the spectrum Fex(t→∞). This result
is an important insight that originates from the dynam-
ical decomposition method and cannot be observed only
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FIG. 1. Phase diagram based on the OTOC saturation val-
ues via Eq. (3), x-axis is the spin interaction strength in the
z-direction Jz and y-axis is the magnetic field h, for N = 14
system size and σzi bulk spin operator, when periodic bound-
ary conditions are set and the initial state is a ground state.
The red lines are the phase boundaries based on Bethe ansatz
technique for infinite-size system [32].

via real-time dynamics simulations, e.g. in Ref. [17]. In
addition, the operator ansatz |W[1,α][θ,β]| � 1 guaran-
tees a bounded correction term Fex(t → ∞) � 1. As
a result, (i) the OTOC is able to capture the degener-
acy in the ground state (Eq. (5)) and, (ii) the correc-
tion of the excited states always remains bounded; all of
which explains why the OTOC differentiates an ordered
phase from a disordered one, e.g. in ground state [17]
or excited-state [18] phase transitions. A mixed initial
state (e.g. finite or infinite temperature) violates the ini-
tial state assumption, hence suggesting a smoothed phase
boundary by washing away the sharp signature at the
transition point [19]. Hence the dynamical decomposi-
tion method reveals the key ingredients of the emergent
relation between information scrambling and symmetry-
breaking phase transitions, rendering this unexpected nu-
merical observation [17] a fundamental connection.

Advanced numerical methods (Lanczos, tensor net-
works) can be employed to determine only the lowest-
lying states to give the leading order term in OTOC,
Eq. (5). In this sense, Eq. (5) provides us a low-cost al-
ternative to simulating the real-time OTOC dynamics in
the computation of the OTOC saturation value when we
use the OTOC to probe criticality. Finally, we predict
that the ground state contribution to the OTOC satura-
tion cannot efficiently distinguish quasi-long range order
from a disordered phase. Because, the quasi-long range
order produces zero expectation value for the order pa-
rameter (per site): W[1,α][1,β] ∼ 0, similar to a disordered
phase, and hence Fgs(t→∞) ∼ 0 follows with correction
term dominating the OTOC saturation F (t → ∞). In
the following we will provide verification for our method
and theory on the 1D XXZ model.

Model and results. The Hamiltonian of the XXZ model
reads,

H = J
∑
i

(
σxi σ

x
i+1 + σyi σ

y
i+1 +

Jz
J
σzi σ

z
i+1

)
+ h

∑
i

σzi ,

where σni are spin-1/2 Pauli matrices with energy scale
set to J and hence time scale set to 1/J ; Jz/J and h are
the z-axis spin coupling strength and the magnetic field
strength, respectively. The red lines in Fig. 1 show the
phase boundaries produced by an exact method (Bethe
Ansatz) for an infinite-size system. Therefore, this model
has three phases: two gapped Ising phases (ferromag-
netic and antiferromagnetic) at large |Jz/J | and a gap-
less XY phase with quasi-long range order for small
|Jz/J |, i.e. the Berezinskii-Kosterlitz-Thouless transi-
tion [33, 34]. We choose the OTOC operators as σzi
or σxi for the spin at the ith site, based on the order
parameters of the ferromagnetic Ising phase (

∑
i σ

z
i ), an-

tiferromagnetic Ising phase (
∑
i(−1)iσzi ), and the XY-

phase (
∑
i σ

x
i ). Fig. 1 shows the phase diagram based

on the saturation values of OTOCs with σzi [computed
using Eq. (3) for a system of N = 14 spins]. We numer-
ically confirm our theory with OTOC saturation values
that are either nonzero or nearly zero in the Ising and XY
phases. In fact, the OTOC recovers the phase boundaries
of the Bethe ansatz solution: the agreement is perfect at
the ferromagnetic-XY phase boundary and approximate
at the antiferromagnetic-XY boundary due to significant
finite-size effects [24].

We plot two cross-sections from Fig. 1 in Fig. 2a where
the lines with orange-squares (h/J = 0) and blue-circles
(h/J = 4) are the saturation values, Eq. (3) for a short-
time tJ ∼ π

4 101 (long-time results in [24]). We also plot
the leading order term in the saturation, Fgs(t → ∞) in
Fig. 2a with purple-cross (h/J = 0) and red-diamond
(h/J = 4) lines. The OTOC saturation exactly re-
duces to the ground state contribution with no correction
Fex = 0 in the Ising-ferromagnet, meaning that the satu-
ration value in the ordered phase is exactly predicted by
the Eq. (5). The reason follows as: the spins are fully po-
larized in the ferromagnetic ground states, and they be-
long to the opposite magnetization sectors of the Hamil-
tonian which has magnetization conservation [H,Sz] = 0
(Sz =

∑
i σ

z
i ). Since they are the only states of their

corresponding magnetization sectors, the fluctuations in
the matrix elements are exactly zero, |W[1,α][θ,β]| = 0.
This is why the system does not scramble information
at all F (t → ∞) = 1, even though the XXZ model
is an interacting model. We emphasize that this non-
scrambling is not due to integrability of XXZ model,
rather it is the signature of critical order. The rota-
tional symmetry also protects the ferromagnetic ground
states from hybridizing, all of which results in no finite-
size effects at the phase boundary from ferromagnet to
XY-paramagnet. In the disordered-XY phase (h/J = 0),
the ground state contribution is zero Fgs = 0, leaving the
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FIG. 2. (a) The OTOC saturation values for a periodic-
boundary chain with N = 14 size and a short-time of tJ =
π
4

101 at fields h/J = 0 (orange-squares: Eq. (3), purple-
crosses: Eq. (5)) and h/J = 4 (blue-circles: Eq. (3), red-
diamonds: Eq. (5)), for σzi operator. (b) Real-time dynam-
ics (blue-circles) averaged over a time interval tJ = 10, F̄ ,
and its ground state contribution Fgs (orange-diamonds) with
DMRG algorithm and MPS for N = 60 at h/J = 0. (c)
System size scaling of Fgs shows Jcz = aNξ + J∞z with expo-
nent ξ = −0.98 and J∞z = 1.02. (d) The OTOC saturation
values for σxi operator at h/J = 0, N = 13 (blue-circles:
Eq. (3), red-diamonds: Eq. (5)) and N = 14 (orange-squares:
Eq. (3), purple-crosses: Eq. (5)) for time tJ = π

4
103. In-

set: System-size scaling of Eq. (3) (blue-circles) and Eq. (5)
(red-diamonds) at Jz/J = −0.9.

correction term to dominate the saturation value, how-
ever with a small magnitude as explained above. This
is the reason of mismatch between the OTOC satura-
tion value and its leading order term, seen in the XY-
phase of Fig. 2a, while we are still able to differentiate
the disordered phase from the ordered phases. Finally, in
the Ising-antiferromagnet the exact agreement between
Eqs. (3) and (5) takes place only at the Jz/J →∞ limit.
As we approach the phase boundary to XY-phase, the
fluctuations between matrix elements gradually increase,
|W[1,α][1,β]| → 0 [24], result in a nonzero but small cor-
rection term to the ground-state contribution and even-
tually drive the phase transition. Since the finite-size
effect is significant for small sizes with exact methods,
we apply density-matrix renormalization group (DMRG)
algorithm with matrix product states (MPS) [24, 35] to
a system with N = 60 and compute the real-time dy-
namics averaged over a short-time interval of tJ = 10
shown with blue-circles in Fig. 2b with orange-diamonds
being Fgs, Eq. (5). Note that the transition point sig-
nificantly shifts towards the equilibrium phase transition

point, Jz/J = 1. We extract the system-size scaling pa-
rameters from our DMRG computations, Fig. 2c and ob-
serve that the system indeed approaches to the equilib-
rium transition point when N → ∞, Jcz = aNξ + J∞z
with exponent ξ = −0.98 and J∞z = 1.02 with a power-
law scaling.

We plot the OTOC with σxi operator for N = 13
(blue-circles) in Fig. 2d: the OTOC saturation remains
small in all three phases and thus the OTOC can hardly
distinguish the XY-ordered from XY-disordered phases.
When the chains with even number of spins are used
(N = 14, orange-squares) in the theory, we do not even
obtain any difference between the phases. This is in
agreement with our theoretical predictions discussed pre-
viously. Additionally, the fluctuations between the ma-
trix elements of quasi-long range order parameter σxi are
always maximal regardless of the phase. Hence, we ob-
serve the mismatch between the OTOC saturation and
its ground state contribution (red-diamonds N = 13 and
purple crosses N = 14). The inset of Fig. 2d shows that
the OTOC saturation value and its ground state con-
tribution, both, decrease with the system size for odd-
numbered chains, exhibiting that the OTOC saturation
cannot capture the quasi-long range order in bigger sys-
tems and thermodynamic limit. We briefly note that the
detection of the order at Jz/J = −1 is robust due to the
massive degeneracy in the ground state at this point of
different symmetry (SU(2) symmetry).

Conclusion. Our theoretical predictions on the XXZ
model can be experimented with cold atoms [36]. Based
on the studies in literature [17–19] and our results in the
XXZ model, our method seems to be universal in explain-
ing the reasoning behind the relation between scrambling
and the quantum criticality. In this sense, our method
is an analogue of Eigenstate Thermalization Hypothesis:
It tells us the criteria of how scrambling probes critical-
ity; though it is independent of the integrability of the
system, unlike ETH. Dynamical decomposition of OTOC
is a complementary tool to the real-time evolution of a
state in determining the OTOC saturation value. How-
ever in addition to providing the saturation value, it
also presents us the conditions for OTOC to show ei-
ther order or disorder. Based on this fact, the leading
order term in our theory, Eq. (5), could mark the phase
transition points via system-size scalings. In conclusion,
given that the initial state of OTOC is a state where
the phase transition is expected to happen and the off-
diagonal matrix elements of the operator are sufficiently
suppressed in this state (or degenerate state subspace),
OTOC could be used to dynamically detect the quantum
phases with long-range order and capture the symmetry-
breaking quantum phase transitions.
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manuscript.
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[9] C. B. Daǧ and L. M. Duan, Phys. Rev. A 99, 052322
(2019), arXiv:1807.11085 [quant-ph].

[10] J. Maldacena, S. H. Shenker, and D. Stanford, Journal
of High Energy Physics 2016, 106 (2016).

[11] Y. Huang, Y.-L. Zhang, and X. Chen, Annalen der
Physik 529, 1600318.

[12] D. J. Luitz and Y. Bar Lev, Phys. Rev. B 96, 020406
(2017).

[13] S. Xu and B. Swingle, arXiv e-prints , arXiv:1802.00801
(2018), arXiv:1802.00801 [quant-ph].

[14] R. Fan, P. Zhang, H. Shen, and H. Zhai, ArXiv e-prints
(2016), arXiv:1608.01914 [cond-mat.quant-gas].

[15] R.-Q. He and Z.-Y. Lu, Physical Review B 95, 054201
(2017), arXiv:1608.03586 [cond-mat.dis-nn].

[16] H. Shen, P. Zhang, R. Fan, and H. Zhai, Phys. Rev. B 96,
054503 (2017), arXiv:1608.02438 [cond-mat.quant-gas].

[17] M. Heyl, F. Pollmann, and B. Dóra, Phys. Rev. Lett.
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