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We have studied topology and dynamics of quantum vortices in spin-2 Bose–Einstein conden-
sates. By computationally modeling controllable braiding and fusion of these vortices, we have
demonstrated that certain vortices in such spinor condensates behave as non-Abelian anyons. We
identify these anyons as fluxon, chargeon, and dyon quasiparticles. The pertinent anyon models
are defined by the quantum double of the underlying discrete non-Abelian symmetry group of the
condensate ground state order parameter.

All elementary particles are classified by their quan-
tum statistics as either bosons or fermions. How-
ever, in certain two-dimensional materials, particle-
like excitations—anyons—which are neither bosons or
fermions, have been predicted to emerge [1, 2]. When two
anyons are exchanged, braiding their space-time world-
lines, the system’s wave function may accumulate an ar-
bitrary phase not restricted to the specific values corre-
sponding to bosons or fermions. For non-Abelian anyons,
exchange may act through non-commuting unitary oper-
ators, rather than simple phases. Also, how such anyons
fuse (combine) when brought together depends on the
history of their paths prior to the fusion. Encoding infor-
mation in the non-local fusion properties of non-Abelian
anyons forms a tantalising prospect for realisation of a
fault-tolerant universal quantum computer [3, 4].

Recent advances in quantum computing have come
from intense research focus on qubits realised in a variety
of systems including trapped ions [5–7], spins in silicon
atoms [8, 9] and superconducting circuits [10, 11]. Such
systems must contend with the accumulation of spon-
taneous errors due to the interactions with the environ-
ment. In contrast, topological quantum computers based
on topological qubits made of non-Abelian anyons are an-
ticipated to be more resilient due to being topologically
protected from many conventional types of decoherence.
Two promising non-Abelian anyon platforms are the Fi-
bonacci and Ising anyon models [12–16]. A number of ex-
periments have explored the potential realisation of such
anyons in condensed matter systems including Majorana
zero modes [17–21] and quasiparticles in certain frac-
tional quantum Hall states [22–24]. Other non-Abelian
anyon models have been proposed to be realisable us-
ing fluxons [25–27]. Notwithstanding, the existence of a
physical system of non-Abelian anyons capable of univer-
sal quantum computation remains an open question.

Theoretically, it is known that quantum vortices in
superfluids are capable of accommodating non-Abelian
quasiparticles. Both Fermi gases with putative chiral p-
wave order parameter and fermionic superfluid helium 3,
if confined in two dimensions, have been predicted to host

Majorana zero modes trapped by their vortex cores [28–
33]. Furthermore, in certain high-spin Bose gases, such as
those considered in this work, vortices are characterized
by non-Abelian symmetry groups [34–38], that result in
non-trivial topological interactions between vortices [39].

Here we build upon these ideas by performing direct
numerical simulations of controllable braiding and fusion
of non-Abelian vortices in spinor Bose gases. We compu-
tationally demonstrate that certain fractional vortices—
particle-like topological excitations in two-dimensional
(2D) spinor Bose–Einstein condensates (BECs)—may be
non-Abelian fluxon anyons and are potentially useful
for applications in topological quantum information pro-
cessing and storage. In addition to fluxons, excitations
in these systems include chargeons [40] and charge-flux
composites known as dyons [41–44]. The full spectrum
of excitations is labeled using the quantum double of the
symmetry group of the condensate [45]. In addition to
chargeons, these systems also allow for completely delo-
calized Cheshire charges [46, 47]. We simulate the braid-
ing and fusion of non-Abelian vortex anyons by employ-
ing external pinning potentials that could be realised us-
ing focused laser beams [48, 49], to controllably manip-
ulate the states of topological qubits constructed from
such non-Abelian vortex anyons.

Non-Abelian vortex anyons—A non-Abelian anyon
model has three essential aspects; (i) a list of particle
types; (ii) a set of fusion rules that determine the types of
particles formed after fusing together two particles; and
(iii) braiding rules that describe the effect of exchang-
ing the positions of two particles. We demonstrate that
the topological interactions of our non-Abelian fractional
vortices in spinor Bose–Einstein condensates [35–37, 50–
54] contain the essential aspects of a non-Abelian anyon
model. The anyon models involved are similar to those
of non-Abelian toric code models [4] or discrete gauge
theories [45].

Physically, the order parameter of a spinor BEC in-
herits a spin degree of freedom from the spin of the
atoms. Interactions between atoms then select out, in
general, a non-Abelian stabiliser subgroup H of sym-
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FIG. 1. Braiding and fusion of non-Abelian fractional vor-
tices. a, The paths of vortices embedded in a two-dimensional
Bose–Einstein condensate trace out world lines that form a
braid whose plat closure yields a link. The total condensate
density is shown for the initial (t̃ = 0) and final (t̃ = 132)
states. b, Spin-singlet pair amplitude (left column) and mag-
netization (right column) with vortex locations marked using
circles and labelled by the vortex (anyon) types. The upper
rows correspond to the system state just after the vortices
have been fused pairwise and the lower rows correspond to
the state just before the fusion. The field of view of each of
the four frames in b-f corresponds to the dashed rectangle
shown in a where the inter-vortex separation is 27µm. The
dimensionless times t̃ = tω of measurement of states b-f are
marked in a.

metries which leaves the condensate ground state order
parameter locally invariant. Vortices are labeled by el-
ements of H, which we call fluxes. Vortices with non-
commuting topological fluxes are called non-Abelian and
are characterised by non-trivial, path dependent, topo-
logical interactions.

Specifically, we consider a spin-2 Bose–Einstein con-
densate in a box trap in zero external magnetic field
with the particle interaction strengths chosen to realise
the cyclic-tetrahedral superfluid ground state phase, for
which H is the non-Abelian binary tetrahedral symmetry
group [55].

Figure 1 shows the outcome of a numerical experi-
ment, obtained by solving the spin-2 Gross–Pitaevskii
equation (see Supplementary Materials [55]) in 2D gov-
erned by a five component spinor wavefunction Ψ, that
demonstrates the exotic braiding and fusion dynamics of
non-Abelian vortices. The system is initialized at time
t = 0 in Fig. 1a by creating four non-Abelian vortices in
the Bose–Einstein condensate by phase-imprinting two
vortex-antivortex pairs [55]. Using pinning potentials

that model an array of Gaussian–shaped laser beams that
repel atoms, the vortices can be pinned and controllably
moved around, forming a braid in their space-time world
lines as shown in Fig. 1a [55]. A plat closure of the braid
is realised by the initial pair-creation and final fusion of
the vortex pairs. The effects of braiding the vortices are
observed at different dimensionless times t̃ = tω, where
ω = 2π × 5 Hz, after alternatively, (i) releasing the pin-
ning potentials and measuring the properties of the four
vortices, see lower rows in Fig. 1(b-f), or, (ii) fusing the
two vortex pairs first and then measuring the result af-
ter releasing the pinning potentials, see upper rows in
Fig. 1(b-f). The vortex locations are visualised via their
core structure, which may have non-zero spin-singlet pair
amplitude, |A|2, and/or non-zero magnetisation, Fz [55].

A detailed understanding of the observed dynamics
comes from labelling the flux of each vortex in Fig. 1(b-
f), enabled by the vortex identification method described
in Ref. [54]. Briefly, at any moment in time we are able
to interrogate the complete spinor wavefunction numer-
ically and thus measure a generalized geometric phase
along any closed path surrounding a vortex or multiple
vortices [54]. Such a measurement will reveal the enclosed
net flux and can be used for determining the outcomes
of braidings and fusions.

The vortex labels have the form ±Xν
η , where Xη is a

Roman numeral denoting the fluxon part of the anyon
type. The state of each anyon is characterized by one of
several (conjugate) fluxes specified by the internal quan-
tum numbers ν and η, and the ± sign [55]. Underpin-
ning the braiding dynamics is the long-range topologi-
cal influence between non-Abelian vortices [26, 27, 39].
For an anti-clockwise elementary braid (exchange of a
pair) of vortices with fluxes (γ1, γ2) their mutual topo-
logical influence converts their fluxes to (γ2, γ2γ1γ

−1
2 ),

[55]. The products and the inverse in γ2γ1γ
−1
2 are taken

in the stabiliser group H [55]. If γ1 and γ2 do not
commute, this mapping permutes the flux of the sec-
ond vortex within the set of fluxes associated with its
anyon type. The clockwise exchange realises the map
(γ1, γ2) → (γ−11 γ2γ1, γ1). Braiding may also enact a lo-
cal unitary transformation on the wave function, which
reverses the sign of the vortex core magnetisation, turn-
ing a red core into a blue core, and vice versa, without
changing the value of their fluxes, as shown in Fig. 1e and
1d. The outcome of fusing two vortices is determined
by an ordered product of their two fluxes equivalent to
their total flux. Only vortices whose fluxes multiply to
the identity element of H may annihilate, otherwise the
fusion results in a remnant vortex. It is also possible
for vortices with commuting fluxes to pass through each
other without apparent interaction [25, 54].

The initial vortex-antivortex pairs in Fig. 1f (lower
row) consist of three particle types; two vortices of same
type (III0) with non-zero |A|2, green cores, and two of
different types (IV0 and VI−1) with Fz > 0, red cores.



3

Initially, both pairs annihilate upon being fused (Fig. 1f,
upper row), by construction. An exchange of the two
vortices in the middle leads to the state measured at
t̃ = 20, shown in Fig. 1e. The braid swaps the positions
of two vortices, which trivially changes the pairwise fu-
sion dynamics as neither the green and red or green and
blue cored vortices can annihilate. The braid between
t̃ = 60 and t̃ = 100 consists of two exchanges (elementary
braids) of the two middle vortices resulting in the state
shown in Fig. 1c. Importantly, although this braiding
preserves the ordering of the vortex types by returning
them to their original pre-braiding positions at t̃ = 60,
the types of vortices formed after fusion are different be-
fore (V0 and VII−1 at t̃ = 60) and after (IV0 and VI−1 at
t̃ = 100) the braiding. Such vortex metamorphosis due to
braiding is a hallmark of non-Abelian anyons. The final
exchange of the middle two vortices results in the state
at t̃ = 132, shown in Fig. 1b, where the two non-Abelian
vortex anyon pairs again annihilate.

Vortex anyon model—The cyclic-tetrahedral phase of
a spin-2 BEC supports seven distinct fluxon types, la-
belled as Iη - VIIη [55]. Each of the seven types of fluxon
comes with several possible charge labels and taking these
into account we obtain the fusion and braiding rules for
a complete anyon model. Here we will focus mostly on
the fusion of the flux types. The fusion outcomes of the
lowest energy fluxons are detailed in the table presented
in the Supplementary Figure S2 [55]. Although the type
IVη - VIIη vortices are non-Abelian anyons, their fusion
rules do not preserve the winding number η of the anyons,
complicating their potential use for topological quantum
computation. However, restricting to the set of three
fluxons I0, II0 and III0, hereafter referred to as 1, σ, and
τ , respectively, results in a concise non-Abelian anyon
model. The fusion of two chargeless τ anyons may re-
sult in either a 1, σ or τ anyon, with the explicit fusion
rule τ ⊗ τ = N1

ττ1 ⊕ Nσ
ττσ ⊕ Nτ

τττ , where the multipli-
ers N1

ττ = 6, Nσ
ττ = 6, and Nτ

ττ = 4 mean that when
anyons a and b fuse, they may form a c anyon in N c

ab

distinct ways [55]. Note that the 6 distinguishable ways
the τ fluxons can fuse to the flux vacuum are further
split by the 4 possible resulting Cheshire charge states
and that only one of those 6 fusion channels corresponds
to the true vacuum state having both vanishing flux and
charge [55]. The non-Abelian τ anyon is its own antipar-
ticle such that upon fusion, two τ anyons may annihilate
each other. The remaining flux fusion rules of this anyon
model are; τ ⊗ σ = τ , σ ⊗ σ = 1 and x ⊗ 1 = x, where
x ∈ {1, σ, τ}. The anyons 1 and σ are Abelian with
quantum dimensions d1 = dσ = 1, respectively. The τ
anyon is the non-Abelian (fluxon) anyon of the theory
with a quantum dimension, dτ = 6, larger than both the
Fibonacci and Ising anyon models.

Topological qubits—The different fusion outcomes of
the anyons define a fusion path, equivalent to a set of
topologically distinct states, which can be used for en-

coding quantum information. We are inspired by the
Fibonacci anyon model where the fusion of three anyons
allows a topological qubit to be defined as a two-level
system plus one non-computational state. In the case of
three τ fluxons, the number of distinct fusion paths in
which information could be stored is significantly larger
than in the Fibonacci anyon model. Nevertheless, for
the sake of demonstration, we consider braiding opera-
tions with three fluxons that involve only a subset of the
many states in the full fusion space and may therefore
be conveniently discussed in terms of effective qubits.
A natural choice for the zero state corresponds to the
creation of two pairs of τ fluxons from the true vac-
uum. The rightmost of the four anyons will not be
part of the qubit and will not take part in any braid-
ing processes we consider. The zero state of the qubit
is then |0〉 = 1

6

∑
γ1, γ2∈III |γ1, γ

−1
1 , γ2〉, corresponding

to three τ anyons with fluxes γ1, γ
−1
1 and γ2 respec-

tively. A convenient choice for the second qubit state
is |1〉 = 1

6

∑
γ1, γ2∈III |γ1, γ1, γ2〉, corresponding to the

fusion of the τ fluxon pair to the σ fluxon.

Figure 2 demonstrates the action of manipulating the
state of such a topological qubit by controllable braiding
of the anyons. Initially, the fluxons are prepared in the
|0〉 state, which in practice could be achieved by nucleat-
ing two vortex-antivortex pairs that introduces a fourth,
surplus, anyon which is disregarded in this numerical ex-
periment without consequence.

A unitary operation, encoded by the braid in Fig. 2a,
is applied to the fluxons by moving the pinning poten-
tials to exchange the second and third anyons within the
qubit structure twice. Once the braiding has been com-
pleted, a measurement of the state is made by fusing the
first and second anyons from the left of the condensate
and observing the remaining core structures shortly after
the pinning potentials have been withdrawn. Prior to the
fusion the three τ anyons are identified by the green |A|2
cores, as shown in Fig. 2b. After the braiding, the mea-
surement outcome depends on the topological influence
between the exchanged anyons. The braid maps the |0〉
state to a superposition

∑
γ1, γ2∈III
γ1γ2=γ2 γ1

|γ1, γ−11 , γ2〉
2
√

3
+

∑
γ1, γ2∈III
γ1γ2 6=γ2 γ1

|γ1, γ1, γ2〉
2
√

6
, (1)

where the two sums contain the combinations of fluxes
which braided with trivial and non-trivial topological in-
fluence, respectively. The probability p that a measure-
ment would record complete annihilation p(0) = 1/3 or
the formation of a σ fluxon p(1) = 2/3 after the braid-
ing is obtained by projecting the braided superposition
state onto the two qubit basis states |0〉 and |1〉. Prior
to the fusion measurement the two possibilities are indis-
tinguishable by any local observation. In general, braid-
ing with respect to this basis would introduce significant
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FIG. 2. Single qubit braiding operation. a, The paths of
the three τ anyons trace out braided world lines enacting a
unitary operation on the initial state. Time flows upward.
The total condensate density is shown for the initial state.
The overlayed concentric ellipses denote the orientation of
the qubit as a graphical representation of the bracket nota-
tion used in the text. b, Spin-singlet pair amplitude of the
qubit just before the fusion. The rounded rectangle marks
the boundary of the condensate and the vortex locations are
denoted by the circles, the inter-vortex separation is 27µm.
c, a fusion outcome corresponding to the annihilation of the
first two anyons as in the |0〉 state [55]. d, a fusion outcome
corresponding to the non-annihilation of the first two anyons
as in the |1〉 state [55]. Data in b-d are thresholded relative
to half the maximum value in b and any maxima within the
vortex location markers are mapped to the solid green circles
[55]. The specific fluxes of the three initial state vortices in (c)
are (IIIx0 ,−IIIx0 , III

x
0) and in (d) they are (IIIx0 ,−IIIx0 , III

y
0).

leakage into the non-computational fusion paths even for
the case of a single qubit. However, this is not a real
problem as we only restricted to a two dimensional space
for illustrative purposes. Any realistic implementation
would use the full fusion space for computations.

In the numerical experiments we simulate two spe-
cific components of the |0〉 state, those with fluxes
(IIIx0 ,−IIIx0 , III

x
0) and (IIIx0 ,−IIIx0 , III

y
0), such that the

braid acts on these basis states in a deterministic man-
ner. In the first case the exchanged anyons commute so
the braid realises a trivial topological influence and the
fusion measures the |0〉 state, shown in Fig. 2c, charac-
terised by a single green core. However, in the latter
case they do not commute so the non-trivial topological
influence changes the signs of the anyons and the fusion
measures the state |1〉 of the topological qubit. Such a
measurement of the |1〉 state is illustrated in Fig. 2d and

Fx

a cb 0.25

0

�0.25

FIG. 3. Signatures of a Cheshire charge. Frames (a)-(c) show
the x-component of the magnetization density of the conden-
sate at the end of the simulation of Fig. 2(c). The time in-
terval between the frames is δt ≈ 16ms. The circular markers
denote the locations of the vortex pinning sites. The expand-
ing ring shaped magnetic soliton structure is emitted due to
the fusion of two fluxons [55].

corresponds to the observation of two green vortex cores,
with the additional filled core corresponding to a σ anyon
formed in the fusion of the two τ anyons.

If spurious vortex-antivortex pairs were nucleated dur-
ing the braiding process, they could in principle braid
with the system vortices leading to topological decoher-
ence via quasiparticle poisoning [15]. Consequently, the
fusion outcomes could no longer be uniquely identified
by the simple green/no green blob signal illustrated in
Fig. 2 [55]. However, this does not occur in our adia-
batic zero-temperature braiding simulations and we nu-
merically measure the fluxes of the vortices explicitly to
verify that the simple blob measurement indeed faithfully
identifies the fusion outcomes in these simulations.

Cheshire charge—We have discussed the topological
qubit at the fluxon level, ignoring the chargeons. How-
ever, the states considered in the single qubit simulations
are τ flux eigenstates, which correspond to charge super-
position states. Here the charge arises as Cheshire charge
[46, 47, 76], which may be revealed when the vortices are
annihilated causing the delocalized Cheshire charge to
appear. After a Cheshire charge localizes to a chargeon,
it could reform as a pair of Alice vortices or a propagating
Alice ring [47]. In our single qubit simulations we have
observed a propagating ring-shaped soliton structure in
the magnetization density of the condensate, Fig. 3(a-
c) [55]. This observed signature may be related to the
phenomenology of Cheshire charges.

Anyons based on finite groups that are solvable but
not nilpotent are capable of universal quantum computa-
tion [77]. Since the binary tetrahedral group does satisfy
these criteria, it may be a fruitful platform for developing
a universal quantum computer. A method to generate
multiple non-Abelian vortices has been outlined in [53].
However, to realize such vortices experimentally a series
of engineering challenges must be confronted [55]. To
ensure the non-Abelian topology, our numerical experi-
ments employ spin interaction strengths which are not
currently achievable in experiment. However, a recent
proposal by Hurst and Spielman Ref. [78] may provide an
experimentally realisable pathway for effectively tuning
the spin interactions. Promisingly, many additional non-
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Abelian phases have been predicted for higher spin BEC
systems [38], which may enable a more accessible experi-
mental route for creating non-Abelian vortex anyons. To
surpass the inertial limitations of massive vortices [79],
including the adiabaticity speed limit of vortex braiding
[80], synthetic non-Abelian fluxons could potentially be
designed and engineered using novel artificial gauge field
techniques [81, 82]. The ability to perform quantum in-
formation processing with the non-Abelian vortices may
be compromised by the substantial challenge of creat-
ing and maintaining true quantum superpositions with
a macroscopic number of atoms in a Bose–Einstein con-
densate. However, we conclude that non-Abelian vor-
tices in spinor Bose–Einstein condensates hold promise
for a tangible demonstration of the underlying principles
of topological quantum computation and should be pur-
sued further.
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