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We demonstrate that, in monolayers (MLs) of semiconducting transition metal dichalcogenides,
the s-type Rydberg series of excitonic states follows a simple energy ladder: ǫn = −Ry∗/(n + δ)2,
n=1,2,. . . , in which Ry∗ is very close to the Rydberg energy scaled by the dielectric constant of
the medium surrounding the ML and by the reduced effective electron-hole mass, whereas the ML
polarizability is only accounted for by δ. This is justified by the analysis of experimental data on
excitonic resonances, as extracted from magneto-optical measurements of a high-quality WSe2 ML
encapsulated in hexagonal boron nitride (hBN), and well reproduced with an analytically solvable
Schrödinger equation when approximating the electron-hole potential in the form of a modified
Kratzer potential. Applying our convention to other, MoSe2, WS2, MoS2 MLs encapsulated in
hBN, we estimate an apparent magnitude of δ for each of the studied structures. Intriguingly, δ is
found to be close to zero for WSe2 as well as for MoS2 monolayers, what implies that the energy
ladder of excitonic states in these two-dimensional structures resembles that of Rydberg states of a
three-dimensional hydrogen atom.

Coulomb interaction in a non-uniform dielectric
medium [1, 2], is one of the central points in inves-
tigations of large classes of nanoscale materials, such
as graphene [3, 4], colloidal nanoplatelets [5], two-
dimensional (2D) perovskites [6, 7], and other atomically
thin crystals including their heterostructures [8]. This
problem has been largely discussed in reference to in-
vestigations of excitons in monolayers (MLs) of semicon-
ducting transition metal dichalcogenides (S-TMDs) [9–
13]. Surprisingly, at first sight, the Rydberg series of s-
type excitonic states in these 2D semiconductors, doesn’t
follow the model system of a 2D hydrogen atom [14–16],
with its characteristic energy sequence, ∼ 1/(n− 1/2)2,
of states with a principal quantum number n. The
main reason for that is a dielectric inhomogeneity of the
2D S-TMD structures, i.e., MLs surrounded by alien
dielectrics. At large electron-hole (e-h) distances, the
Coulomb interaction scales with the dielectric response
of the surrounding medium whereas it appears to be sig-
nificantly weakened at short e-h distances by the usually
stronger dielectric screening in the 2D plane. A common
approach to account for the excitonic spectra of S-TMD
MLs refers to the numerical solutions of the Schrödinger
equation, in which the e-h attraction is approximated by
the Rytova-Keldysh (RK) potential [1, 2]. However, it
is only solvable numerically. A more phenomenological
and intuitive approach, presented below, might be an op-
tional solution to this problem.

In this Letter, we demonstrate that the energy spec-
trum, ǫn (n=1, 2,. . . ), of Rydberg series of s-type exci-
tonic states in S-TMD MLs may follow an energy lad-
der: ǫn = −Ry∗/(n + δ)2. From magneto-optical inves-

tigations, we accurately establish that Ry∗=140.5 meV
and δ=-0.083 for a WSe2 ML encapsulated in hexagonal
boron nitride (hBN). The ǫn = −Ry∗/(n + δ)2 ansatz is
well reproduced with an analytical approach in which the
e-h potential is assumed to have the form of a modified
Kratzer potential [17]. Here Ry∗ = Ry µ

ε2m0

is the effec-
tive Rydberg energy, scaled by the dielectric constant ε of
the surrounding hBN medium and the reduced e-h mass
µ, where Ry=13.6 eV and m0 is the free electron mass.
Dispersion of Ry∗ and δ parameters in different studied
samples, WSe2, MoSe2, MoS2, and WS2 MLs encapsu-
lated in hBN, is discussed and the reduced e-h masses in
these ML structures are estimated.

To accurately determine the characteristic ladder of
s-type excitonic resonances in the experiment, we prof-
ited of a particularly suitable for this purpose method of
magneto-optical spectroscopy [18, 19]. The active part of
the structure used for these experiments was a WSe2 ML
embedded in between hBN layers. More details on sam-
ples’ preparation and on the experimental techniques can
be found in the Supplemental Materials (SM)[20]. We
measured the (circular) polarization resolved magneto-
photoluminescence (PL) at low temperatures (4.2 K) and
in magnetic fields up to 14 T, applied in the direction
perpendicular to the monolayer plane. Here we focus
on magneto-PL spectra of our WSe2 ML, observed in
the spectral range from ∼1.7 to ∼1.9 eV. As shown in
Fig. 1(a) and (b), these spectra are composed of up to
five PL peaks, which are clearly resolved in the range
of high magnetic fields. Following a number of previous
investigations [24, 38–41] on similar structures, the ob-
served PL peaks are identified with a series of excitonic
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FIG. 1. (a) Helicity-resolved (σ±) PL spectra of WSe2 ML at selected magnetic fields. The separate parts of the spectra are
normalized to the intensity of the 1s, 2s, and 3s lines. (b) False-colour map of the corresponding PL spectra from 0 to 14 T.
(c) Obtained excitonic energies for σ± components as a function of magnetic fields. Mean energies of the σ± components of
excitonic resonances measured on WSe2 ML as a function of (d) B and (e) B2. The black lines are obtained by fitting the
presented data with (d) E5s(B) = A + 9/2~ω∗

c (A is a fitting parameter) and (e) Ens(B) = Ens(B = 0) + σB2.

resonances forming the 1s, 2s, . . . , 5s Rydberg series of
the so-called A exciton [11, 12]. Each ns PL peak demon-
strates the Zeeman effect. This is illustrated in Fig. 1(c)
in which the energies of the σ±-polarized PL peaks are
plotted as a function of the magnetic field. In accordance
with previous reports we extract g=-4.1 for g-factor of
the 1s resonance, but read a significantly stronger Zee-
man effect for all excited states (g ∼-4.8). The later
observation is intriguing and should be investigated in
more details, which is, however, beyond the scope of the
present paper. We have also carried out the magneto-PL
experiments on MoS2 and WS2 monolayers encapsulated
in hBN, but only the 1s and 2s resonances could be ob-
served in these structures in the range of magnetic fields
applied (see SM for details).

The magnetic field evolution of the mean energies of
σ± PL peaks is illustrated in Figs 1(d) and (e). These
energies, Ens, are plotted as functions of the magnetic
field B in Fig. 1(d), and its square B2 in Fig. 1(e),
which illustrate the characteristic behavior of ns states
in the low- and high-field regime [14, 19]. The high field
limit, for a given ns resonance, appears when lB ≪ rns,
Ens

b ≪ ~ω∗
c/2. Here rns and Ens

b denote the root-mean-
square radius and the binding energy Ens

b =Eg-Ens of a

given ns state at B=0, ~ω∗
c = ~eB/µ, lB =

√

~/eB is
the magnetic length and other symbols have their con-
ventional meaning. In the high-field limit, the energies
of Ens resonances approach a linear dependence upon B,
with a slope given by (n− 1/2)~ω∗

c . In the low field limit
(lB ≫ rns, Ens

b ≫ ~ω∗
c/2), the ns resonances display

the diamagnetic shifts: Ens(B) = Ens(B = 0) + σB2,
with the diamagnetic coefficients σ = (erns)

2/8µ. The

1s and 2s resonances follow the low-field regime in the
entire range of the magnetic fields investigated due to
their small exciton’s radii and/or large binding energies,
see Fig. 1(e). The high field regime is approached for the
5s resonances with an approximate linear dependence of
E5s with B, in the range above ∼8 T. This dependence,
marked with a solid line in Fig. 1(d), displays a slope of
2.1 meV/T, which if compared to (9/2)~ω∗

c dependence,
provides an estimate of 0.25 m0 for the reduced mass in
the WSe2 ML. However, one may also argue that working
with magnetic fields up to 14 T only, the high field limit
is still barely developed even for the 5s state. In this con-
text, our estimation of the reduced effective mass should
be seen as its upper bound and, in the following we as-
sume µ=0.2 m0 for the WSe2 ML, following the results
of experiments performed in fields up to 60 T [24].

In the following we focus on the energy sequence Ens

of 1s, 2s, . . . , 5s excitonic resonances as they appear in
the absence of magnetic field. As shown in Fig. 1(e), the
Ens values are determined with linear extrapolations of
Ens versus B2 dependences to B=0. Next, we assume
that the sequence Ens obeys the rule:

Ens = Eg −Ry∗/(n + δ)2, (1)

where, at this point, Eg, Ry∗, and δ are regarded as ad-
justable parameters. To test the above formula against
experimental data, we note that Eq. 1 implies that the
ratio (E3s − E1s)/(E2s − E1s) only depends on δ, and,
reading it from the experiment, we extract δ=-0.083.
With this value we find (see Fig. 2) that our experi-
mental Ens series perfectly matches Eq. 1 together with
Eg=1.873 eV and Ry∗=140.5 meV (or exciton bind-



3

0.0 0.1 0.2 0.3 1.0 1.1 1.2
1.70

1.72

1.82

1.84

1.86

1.88

 

 

En
er

gy
 (e

V
)

1/(n-0.083)2

1s

2s

3s
4s

5s Eb

Eg

2s

FIG. 2. Experimentally obtained transition energies for the
exciton states as a function 1/(n + δ)2 for δ=-0.083. The
black line shows a fit of the data to the model described by
Eq. 1. The grey lines denote the band-gap (Eg) and excitonic
binding (Eb) energies.

ing energy Eb = Eg − E1s =167 meV). The above Eg

and Eb values are in very good agreement with those
already reported in the literature [24]. Relevant for
our further analysis, is the observation that the derived
value for Ry∗ coincides well with the effective Rydberg
energy Ry∗=13.6 eV·µ/(ε2m0)=134.3 meV, scaled by
the dielectric constant of the surrounding hBN mate-
rial ε = εhBN=4.5 [27] and the reduced effective mass
µ=0.2 m0 [24] of the WSe2 ML. Intriguingly, the ex-
tracted δ-parameter is close to zero which implies that
the ǫn=Ens-Eg Rydberg series found in a 2D system re-
sembles that of a 3D hydrogen atom (ǫn∼−1/n2).

On the theoretical ground, the problem of excitonic
spectrum in S-TMD MLs is commonly solved by invok-
ing the Rytova-Keldysh potential [1, 2] URK(r) (purple
curve in Fig. 3) to account for a specific character of
the e-h attraction in these systems. At large e-h dis-
tances r, URK(r) coincides with a usual Coulomb poten-
tial URK(r) ∼ −e2/εr (blue curve in Fig.3), which scales
with the dielectric constant ε of the material surrounding
the monolayer. On the other hand, URK(r) ∼ log(rε/r0)
when r is small, what accounts for the effective dielectric
screening length r0 = 2πχ2D in the system, where χ2D is
the 2D polarizability of S-TMD ML. Distinctly, the ap-
parent excitonic spectra and the related exciton binding
energies critically depend on the efficiency of dielectric
screening of the electron-hole attraction in the medium
surrounding the monolayer.

Whereas previous efforts have been largely focused on
the numerical study of such problem, we show that our
model provides the analytical solution, which is in a good
agreement with the experimental results discussed above.
We propose to replace URK(r) with the approximate po-
tential Uapp(r), taken in the form of piecewise function.
Namely, the sub-function Ucor(r) defines Uapp(r) at small

distances r (the core domain), while the external poten-
tial Uext(r) corresponds to Uapp(r) in the region outside
of the core.

We choose the external potential in the form of the
modified Kratzer potential [17] (given in CGS units)

Uext(r) = −
e2

r0

[r∗0
r

−
g2r∗20
r2

]

, (2)

where r∗0 = r0/ε is the reduced screening length and g is a
tunable parameter. For the case of g2 = 0.21, Uext(r) fits
URK(r) in the region r > rmin = 0.46 r∗0 with the relative
deviation less than 5%. For the WSe2 ML encapsulated
in hBN, the distance rmin = 4.6 Å is comparable with
the lattice constant a = 3.28 Å [42] of WSe2 (see Fig 3
for comparison).

The Schrödinger equation with the Kratzer poten-
tial (2) provides the excitonic spectrum of the s-type
states (see SM for details):

ǫn = −Ry∗/(n + gκ− 1/2)2, (3)

in which κ2 = 2r∗0/a
∗
B and a∗B = ~

2ε/µe2 is the ef-
fective Bohr radius. The effective Rydberg constant
Ry∗ = e2/2εa∗B sets the energy scale in the system, while
δ = gκ− 1/2 defines the relative positions of the energy
levels in the spectrum. Note that Eq. 3 is an analogous
of our experimentally found relation given by Eq. 1.

In the following, we introduce Ucor(r), which replaces
the Kratzer potential at small distances r, comparable
with the lattice constant of WSe2. We choose the con-
stant attractive potential Ucor(r) = V0. Below we demon-
strate that it doesn’t change ∝ (n + δ)−2 behaviour of
the spectrum and modifies only δ parameter.

We consider the Kratzer and constant potentials as ex-
ternal and core ones, respectively. We choose the param-
eter g2 = 0.21 and the region of validity of the Kratzer
potential up to its minimum ξ0 = 2g2, where ξ = r/r∗0 .

FIG. 3. Rytova-Keldysh (purple curve), Coulomb (blue
curve) and Kratzer potential with g2 = 0.21 (red curve), as a
function of dimensionless parameter r/r∗0 . The energy scale
is measured in units of U0 = e2/r0. The grey rectangular de-
picts the region of distances smaller than the lattice constant
a = 3.28 Å of WSe2 ML encapsulated in hBN (r∗0 = 10 Å).



4

The parameter V0 of the core potential is chosen as
an average value of URK(ξ) in the domain ξ ∈ [0, ξ0]:

V0 = 2ξ−2
0

∫ ξ0

0
dξξURK(ξ). Finally the approximate po-

tential is

Uapp(ξ) = −U0

{[1

ξ
−

0.21

ξ2

]

θ(ξ− ξ0)+v0 θ(ξ0− ξ)
}

, (4)

where θ(x) is the step-function and v0 = 1.71134. Note
that the truncated Kratzer potential is applicable only
if the radius of the core potential rcor is less or com-
parable with the lattice constant a. We estimate that
this requirement is well satisfied for all monolayers en-
capsulated in hBN, and in particular for our WSe2 struc-
ture.Considering the s-type excitonic states in this later
system, we derive the following formula (a detailed de-
scription is given in SM)

ǫn = −134 meV/(n− 0.099)2. (5)

Both found values: 134 meV and −0.099 match their
experimentally obtained counterparts (with the aid of
Eq. 1) Ry∗ =140.5 meV and δ = −0.083.

The applicability range of the formula given by Eq. 1
can be also considered from a different angle, i.e., when
it is directly compared/fitted to numerical solutions ob-
tained within the Rytova-Keldysh formalism. As demon-
strated in the SM, the validity range of Eq. 1 can be de-
fined with respect to a single, dimensionless parameter of
a monolayer structure: b = a∗B/r

∗
0 , and we find that our

simple approach is valid when b > 0.3, and estimate that
this condition is well satisfied for all monolayers encapsu-
lated in hBN. Nevertheless, even if b is as small as b ≈ 0.1,
what may correspond to the case a monolayer deposited
on Si/SiO2 substrate, the spectrum given by Eq. 1 coin-
cides with that derived with the Rytova-Keldysh poten-
tial within the accuracy of 5%.

The model proposed above accounts well for the exper-
imental results obtained for the WSe2 monolayer and it
is interesting to test this model for other S-TMD mate-
rials. Unfortunately, the observation of the rich Rydberg
spectrum of excitonic states in S-TMD MLs seems to
be, so far, uniquely reserved for WSe2 MLs. Neverthe-
less, for all other S-TMD MLs studied, i.e., MoS2, WS2,
and MoSe2 MLs encapsulated in hBN, we observe the
2s in addition to the 1s excitonic resonance,see Fig. 4
and Fig. S7 in SM. The energy positions, E1s and E2s,
of the 1s and 2s resonances (of A exciton) are directly
read from Fig. 4. Of interest is the energy difference
(E2s-E1s)=∆Eexp

2s−1s listed in Table I, for all four MLs
investigated.

As shown in Fig. 4, the PL peaks associated with
the excited excitonic states are followed by noticeable
PL tails developed at higher energies. We believe that
these tails penetrate above the band-gap energies which
are, however, not spectacularly marked in the spectra.
We note, that in the case of our WSe2 ML, the PL
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FIG. 4. Low temperature PL spectra of S-TMD MLs at
T=5 K. The pink vertical arrows denote the estimated band-
gap energies Eg. The chosen spectral regions are scaled for
clarity. Typically for S-TMDs monolayers, the most pro-
nounced emission feature seen in our spectra is due to the 1s
excitonic resonance accompanied by low energy peaks com-
monly assigned to different excitonic complexes [33, 40, 43–
53].

intensity at the band-gap energy (accurately estimated
from magneto-PL data and marked with a pink arrow in
Fig. 4) consists of 5% of the intensity of the 2s exciton PL
peak. Applying the same convention to all spectra pre-
sented in Fig. 4, we estimate the band gaps in the three
other MLs, as illustrated with pink arrows in this figure.
Most critical is estimation of the band gap in MoSe2
ML (see SM for details). With estimation of the band
gap and reading the energies of 1s excitonic resonances
directly from the spectra (see Fig. 4), we extract exci-
ton binding energies Eexp

b = (Eg − E1s) and show their
values in Table I. Having estimated ∆Eexp

2s−1s and Eexp
b

parameters, and following our predictions that Ens =
Eg −Ry∗/(n + δ)2, where Ry∗ = Ry × µ/(ε2hBNm0), we

TABLE I. Series of parameters (Eexp

b , ∆Eexp
2s−1s, δexp, µexp)

obtained from the analysis of PL spectra shown in Fig.4, com-
pared with results of DFT calculations (µDFT) [42].

Eexp

b ∆Eexp

2s−1s δexp µexp µDFT

Monolayer (meV) (meV) (m0) (m0)

WSe2 167 130 -0.083 0.21 0.16

MoSe2 216 153 0.174 0.44 0.27

WS2 174 141 -0.229 0.15 0.15

MoS2 217 168 -0.095 0.26 0.24
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derive the δexp and µexp parameters for all MLs studied,
see Table I. We found very good agreement between our
estimations and results of DFT calculations [42] for the
reduced masses in WS2 and MoS2 MLs, while we note
an apparent discrepancy for WSe2 and MoSe2 MLs. We
also applied our model to estimate values of band gaps
and binding energies to the experimental data available
in the literature [9, 37], which is discussed in SM.

Concluding, we have demonstrated that the ns Ry-
dberg series of excitonic states in S-TMD monolayers
encapsulated in hBN follows a simple energy ladder:
ǫn = −Ry∗/(n + δ)2. Ry∗ = Ry × µ/(ε2m0), where Ry
is the Rydberg energy, µ denotes the reduced e-h mass,
and ε is the dielectric constant of the surrounding ma-
terial. The dielectric polarizability χ2D of a monolayer
is only encoded in δ. Strikingly, δ is found to be close
to zero for WSe2 (and MoS2) ML whose ǫn spectrum
resembles that of a 3D hydrogen atom. The proposed
model may be applicable to other Coulomb bound states
(e.g. donor and/or acceptor states), also to other sys-
tems, such as colloidal platelets [5] or 2D perovskites [6].
Interestingly, the ǫn = −Ry∗/(n + δ)2 formula coincides
with that expected for a hypothetical hydrogen atom in
fractional dimension N , (N = 2δ + 3), which was indeed
speculated [16] to mimic the spectrum of Coulomb bound
states in low-dimensional semiconductor structures.
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Institut Néel, CNRS UGA, and the LNCMI-CNRS, a
member of the European Magnetic Field Laboratory
(EMFL). M.B. acknowledges the financial support from
the Ministry of Education, Youth and Sports of the Czech
Republic under the project CEITEC 2020 (LQ1601).
K.W. and T.T. acknowledge support from the Elemental
Strategy Initiative conducted by the MEXT, Japan, and
the CREST (JPMJCR15F3), JST.

∗ maciej.molas@fuw.edu.pl
† marek.potemski@lncmi.cnrs.fr

[1] N. S. Rytova, Proc. MSU, Phys. Astron. 3, 308 (1967).
[2] L. V. Keldysh, JETP Lett. 29, 658 (1979).
[3] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and

A. H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).
[4] C. Faugeras, S. Berciaud, P. Leszczynski, Y. Henni,

K. Nogajewski, M. Orlita, T. Taniguchi, K. Watanabe,
C. Forsythe, P. Kim, R. Jalil, A. K. Geim, D. M. Basko,
and M. Potemski, Phys. Rev. Lett. 114, 126804 (2015).

[5] S. Ithurria, M. D. Tessier, B. Mahler, R. P.
S. M. Lobo, and A. L. Dubertret, B.and Efros,
Nature Materials 10, 936 (2011).

[6] C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M.
Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis,
Chemistry of Materials 28, 2852 (2016).

[7] J.-C. Blancon, A. V. Stier, W. Tsai, H.and Nie, C. C.
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