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One-dimensional fracton systems can exhibit perfect localization, failing to reach thermal equi-
librium under arbitrary local unitary time evolution. We investigate how this nonergodic behavior
manifests in the dynamics of a driven fracton system, specifically a one-dimensional Floquet quan-
tum circuit model featuring conservation of a U(1) charge and its dipole moment. For a typical
basis of initial conditions, a majority of states heat up to a thermal state at near-infinite tempera-
ture. In contrast, a small number of states flow to a localized steady state under the Floquet time
evolution. We refer to these athermal steady states as “dynamical scars,” in analogy with the scar
states observed in the spectra of certain many-body Hamiltonians. Despite their small number,
these dynamical scars are experimentally relevant due to their high overlap with easily-prepared
product states. Each scar state displays a single agglomerated fracton peak, in agreement with the
steady-state configurations of fractonic random circuits. The details of these scars are insensitive
to the precise form of the Floquet operator, which is constructed from random unitary matrices.
Rather, dynamical scar states arise directly from fracton conservation laws, providing a concrete
mechanism for the appearance of scars in systems with constrained quantum dynamics.

Introduction. Quantum many-body systems can host
many unusual properties in their ground state, such as
fractionalized quasiparticles and protected degeneracies.
In contrast, highly-excited states were long thought to
be relatively boring, on the grounds that they should
behave like thermal states, as dictated by the Eigenstate
Thermalization Hypothesis (ETH)' 2. In recent years,
however, new types of quantum many-body systems have
been studied which violate the ETH. The most common
example is many-body localization (MBL)* %, typically
driven by the effects of disorder, in which essentially all
eigenstates are athermal, characterized by an extensive
number of emergent local integrals of motion.

Recently, a new type of non-ergodic behavior has been
observed in the form of quantum many-body scars” 0.
In contrast to the fully localized spectrum of MBL sys-
tems, scars are a small number of localized states in an
otherwise thermalizing spectrum. While scars constitute
a vanishing fraction of the spectrum in the thermody-
namic limit, they are of direct experimental relevance,
since they have high overlap with easily-prepared prod-
uct states. Indeed, scar states have been proposed as
an explanation for the long-time oscillations observed in
Rydberg atom chains”!!. The scar phenomenon, first
encountered in the AKLT model'?, arises in a variety of
many-body Hamiltonians'31°. In this paper, we demon-
strate a fundamentally new type of scars, robust against
arbitrary driving, which we refer to as “dynamical scar
states,” arising in systems subject to certain conserva-
tion laws. Specifically, this small set of athermal states
manifests in the steady-state configurations of a Floquet
system as a consequence of a new mechanism for local-
ization encountered in the context of fracton physics.

A fracton'® is an emergent quasiparticle found in vari-
ous condensed matter contexts, such as spin liquids'” 22
and crystalline defects?327, exhibiting a characteris-
tic immobility arising from conservation of higher mo-
ments, such as dipole moment?®29, This constraint in-

hibits thermalization, since a fracton cannot freely move
around the system. In three spatial dimensions, a system
of fractons will eventually thermalize, albeit logarithmi-
cally slowly, in a manifestation of glassy dynamics!' "33,
In one-dimensional fracton systems, however, a fracton
can forever remain localized at its initial position, even
under random local unitary time evolution.?? Unlike con-
ventional localization, where particles are independently
localized, a collection of fractons will agglomerate into
a single peak at their center of mass, as a consequence
of their gravitational attraction.?® Notably, only states
featuring nonzero fracton charge can remain localized,
while dipole states quickly thermalize.

The localization observed in random unitary circuits
is expected to also manifest in the steady-state dynamics
of Floquet fracton systems, which feature the extra con-
straint of conservation of quasienergy. However, since
fracton states can be localized while dipole states ther-
malize, it is clear that such a system cannot be fully
localized. Rather, we expect to see a special set of ather-
mal states, as in the framework of many-body scars. To
consider the connection between fractons and scars in de-
tail, we study a one-dimensional Floquet system with the
mobility restrictions of fractons, implemented via quan-
tum circuits. In addition to the charge and dipole con-
servation characteristic of fracton systems, we add trans-
lation invariance, to rule out the possibility of conven-
tional disorder-driven localization, but otherwise allow
the unitary gates to be chosen randomly.

To determine the steady-state dynamics of this Flo-
quet fracton system, we begin by finding the spectrum
of the Floquet operator, which contains many ETH-
violating eigenstates, as discussed in the context of
Hilbert space “fragmentation”.?*3% We then consider a
more generic basis of initial conditions which are not
eigenstates of the Floquet evolution. For a typical ba-
sis of initial conditions, the majority of states heat up
to an entropy-maximizing thermal state at near-infinite



temperature. In contrast, a small number of states re-
main stably localized under the driving, characterized
by subthermal entanglement. We refer to these ather-
mal steady states as “dynamical scar states,” in analogy
with the scar eigenstates of Hamiltonian systems. There
is one scar state in each sector of a particular charge
and dipole moment, characterized by an agglomerated
fracton peak. Like conventional Hamiltonian scars, the
number of scar states grows algebraically with system
size, L, while the number of thermalizing states grows
exponentially, 3¥. However, this new type of dynamical
scar state possesses several unusual features which have
not, previously been observed. Unlike conventional scar
systems, the athermal behavior of dynamical scars per-
sists under generic driving starting from arbitrary initial
conditions. Also, these localized states appear as a direct
consequence of conservation of dipole moment3?, with-
out relying on specific features of a Hamiltonian, such
as a projective structure. They also represent the first
example of athermal states exhibiting gravitational clus-
tering. In these ways, dynamical scar states push the
field of nor-ergodic physics in an interesting new direc-
tion.

Fractonic Floquet Quantum Circuit Model. We work
with a one-dimensional chain of L sites, with a single
spin-1 on each site, and periodic boundary conditions.
We time-evolve with a random quantum circuit of local
unitary gates, constrained to locally conserve the total
z component of the spins (which serves as a conserved
U(1) charge), and also the total dipole moment of this
effective charge (evaluated with respect to an arbitrary
origin, and conserved mod L due to periodic boundary
conditions). Instead of a completely random unitary cir-
cuit, as in Ref. 32, we impose discrete time-translation
symmetry. Using a stroboscopically repeating circuit al-
lows us to study eigenstates and eigenvalues, i.e. pro-
viding more tools compared to a simple random cir-
cuit. We consider a translation-invariant Floquet ran-
dom circuit (Fig. 1) to exclude the possibility of local-
ization for conventional reasons. The time-evolution is
governed by a circuit with staggered layers of three-site
unitary gates. The time evolution unitary is given by
Ut) =TI,_, U, t' — 1), where

I U?ﬁ,3i+1,3i+2 if ' mod 3 =0
Hz’ UBBi—l,3i,3i+1 if ! mod3=1 (1)
I U?g—273i—1,3i if #' mod 3 = 2,

Uit t'—1)=

and U4, UPB, and U are chosen at random for a given
realization, but remain fixed throughout that run.
Steady States. To study the dynamics of our Floquet
fractonic circuit, we begin by finding the eigenstates of
the Floquet operator, which are trivially steady states. If
the system is initialized in any of these eigenstates, it will
remain in that state for all later times. These eigenstates
can be characterized in terms of their entanglement. In
Fig. 2a, we plot the bipartite entanglement entropy of
these eigenstates as a function of their quasienergy (over
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FIG. 1: Floquet fractonic circuit (period 3): each site is
a three-state qudit. Each gate (colored box) conserves
Stotal and Piotal of the three qudits it acts upon. The
block diagonal Haar-random unitary with its nontrivial
blocks is also shown. All gates of a particular color are
identical.

[—7/3,7/3]), for a single run, i.e. a single choice of Uy,
Ug, and Ug. (Quasienergy is the conserved quantity
associated with discrete time-translation symmetry. A
state |¢) with quasienergy e satisfies U (T)[1)) = e*T|¢)).)
In contrast to a simple thermalizing system, in which
most eigenstates have near-maximal thermal entangle-
ment, the eigenstates of our Floquet fractonic circuit
have a wide range of entanglement values. In partic-
ular, there are a number of zero-entanglement product
states in the spectrum, arising as a consequence of the
Hilbert space “fragmentation” discussed in Refs. 34 and
35.

While the eigenstates |¢,,) of the Floquet operator ex-
hibit a large degree of athermal behavior, it is important
to consider a more general set of initial conditions. Say
we prepare the system in a state from a different basis,
|¢m), prior to applying a Floquet fractonic circuit. For
example, we could prepare the system in an eigenstate
of some other Hamiltonian. After time-evolving by time
t, the state of the system will be:

@, (1)) = Zeient|wn><¢n|¢m> (2)

where ¢, is the quasienergy of eigenstate [¢,,). We now
form the density matrix, p,,(t) = |[®, () (P (t)], and
take its time average to find the steady state of the Flo-
quet time evolution. Assuming negligible degeneracies
in the spectrum (as borne out by the data in Fig. 2a),
the steady state of the system is given by>¢:

Pn = D | Amnl*[t0n) (] 3)

where A, = (Un|dm). We therefore see that we can
form steady states of the Floquet fractonic circuit by
simply taking linear combinations of the density matrices
of the eigenstates.
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FIG. 2: Bipartite entropy S of: a) pure eigenstates, exhibiting Hilbert space fragmentation®3°, b) steady states of
initial conditions slightly different from eigenstates (Ae = 107?), and c) steady states of random initial conditions.

We first investigate a set of initial conditions which
are only mildly changed from the eigenstate basis. We
consider initializing our system in states |¢,,) which are
random superpositions of eigenstates only within some
quasienergy window Aeg, such that eigenstates are re-
covered in the Ae — 0 limit. In Fig. 2b, we plot the
bipartite entropy (i.e. the entropy of the reduced density
matrix for half of the system) of the steady states of a sin-
gle run versus their average quasienergy, for Ae = 1073,
As discussed more fully in the accompanying Supplemen-
tal Material®”, this choice of quasienergy window for an
L =9 system typically contains less than 10 eigenstates,
which are spread fairly evenly in quasienergy. Even for
this small amount of mixing of eigenstates, representing
a reasonable set of initial conditions, the states begin
to separate into two distinct entropy bands, unlike the
seemingly random entropies of eigenstates. The majority
of states exist in a band near maximal entropy, consis-
tent with an infinite temperature state. Meanwhile, a
much smaller set of states exhibit significantly lower en-
tanglement. Indeed, as we show in the Supplementary
Material®”, the scar states exhibit a subthermal von Neu-
mann entropy consistent with an area law.

To confirm the generality of this picture for typical
initial conditions, we next consider a randomly chosen
basis |¢.,) of initial conditions. In other words, we let
the energy window Ae of superpositions tend to 27/3.
The bipartite entropy of the steady states versus their
average quasienergy is plotted in Fig. 2c. As can be
seen, a randomly chosen basis of initial conditions leads
to two fairly sharp entropy bands, with the lower band
having a clearly subthermal entropy. The existence of
these low-entropy states provides a counter-example to
the conventional wisdom that a Floquet system should
always heat up to infinite temperature unless its spec-
trum is completely localized. However, a Hamiltonian
system featuring scar eigenstates will generically fully
thermalize under driving.

Importantly, the number of low-entanglement states
grows only algebraically in system size, as we discuss
below, while the number of thermal states grows expo-

nentially. In light of these facts, we refer to these steady
states as “dynamical scar states,” in analogy with the
ETH-violating scar eigenstates of certain Hamiltonian
systems. The existence of these scar steady states un-
der Floquet evolution is independent of the details of
the gates making up the time evolution evolution op-
erator, which are chosen randomly. Furthermore, the
dynamical scar states are present even for a translation-
invariant Floquet random circuit, indicating that scar-
ring does not arise from conventional disorder-driven lo-
calization. This is consistent with the behavior of fully
random fractonic circuits, which were similarly argued
to exhibit localization in the absence of disorder.3?

Characterization of Scar States. To build intuition for
the nature of the dynamical scar states, it is useful to
study the profile of the S, expectation value. In Fig.
3b, we display the (S,) profile for a typical scar state
and typical thermal state for L = 9. Other scar and
thermal states feature the same behavior. The thermal
state has an almost flat distribution, as expected. In
contrast, the scar states each feature a single localized
fracton peak. Even for initial conditions with multiple
fractons scattered throughout the system, the steady-
state configuration features only a single peak, corre-
sponding to the fractons clustering at their mutual cen-
ter of mass. For each (Q, P) sector, there is only a single
scar steady state (Fig. 3a) with the fractons maximally
clustered. The only exception is the @) = 0 sector, which
does not exhibit any localized states. This behavior,
with no known analogue in Hamiltonian scars, is con-
sistent with the fracton agglomeration observed in the
steady states of fractonic random circuits.??

Remarkably, the scar states have high overlap with
“minimal” product density matrices corresponding to
different values of charge and dipole moment. The min-
imal product density matrix with charge @) and dipole
moment P is a product of identity operators on almost
every site, except for (I+.5%) operators on exactly @ sites
chosen to correspond to dipole moment P. For example,
for Q = 1, the corresponding minimal product density
matrices takes the form ppin = - IQIQ([+S5,)RIRI -,
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FIG. 3: a) For typical initial conditions, there is one scar state per sector, as diagnosed by entropy (shown for
Q =1,P=1). b) A typical scar state (red) features a single fracton peak, while a typical thermal state (blue) has
a mostly flat (S,) profile. c¢) Scar states have high fidelity with minimal product density matrices. (L = 9)

where the lone (I+5,) operator is on site P (with respect
to the chosen origin). For higher charges, the (I + 5.)
operators are placed as close together as possible consis-
tent with the given dipole moment, to capture the effects
of fracton agglomeration. We now evaluate the quantum
fidelity between a scar steady state, pscar, and the min-
imal product density matrix with the same @ and P
expectation values:

Flpuins ) = (5] Vommprrun ) 8

which serves as a measure of closeness of the two quan-
tum states. The results are shown in Fig. 3c for states
in the @ = 1 sector (L = 9). We find high agreement
between the scar states and minimal product density ma-
trices. These minimal product density matrices were pre-
cisely the initial conditions which led to fracton localiza-
tion under random unitary circuit dynamics.?? We there-
fore identify scars with the localized steady states ob-
served in Ref. 32, and conclude that scarring originates
from the same physical mechanism. Our present investi-
gation thus suggests that quantum dynamics with frac-
tonic constraints is ergodic almost everywhere in Hilbert
space, as characterized by near-maximal entropy. How-
ever, there is a special scar subregion of Hilbert space
that displays nonergodic behavior under driving. Fur-
thermore, being close to product states, the scar states
are of direct experimental importance.

Enumerating the Scar States. As seen earlier, for typ-
ical initial conditions, there is precisely one scar steady
state per sector (@, P), corresponding to the minimal
product density matrix within that sector. Therefore, to
determine the number of scar steady states for a given
basis, we only need to count the distinct number of
(Q, P) sectors. We first determine the number of dis-
tinct dipole sectors for a given charge (). For a system
of size L, given a charge @), the value of the dipole mo-
ment can go from Q(Q —1)/2 to QL —Q(Q+1)/2. This
gives QL — Q2 + 1 distinct sectors per charge Q. Note
that this formula is not operative for the ) = 0 sector,
where there is no localization. This formula agrees well

with what we observe in our simulations (Fig. 4a).

Now we determine the number of scar steady states
NEotal(L) in the entire spectrum for a system of size L,
and test our analytic prediction against numerics. To do
this, we evaluate the following sum:

L
NIEN(L) =2 (QL—Q* +1). (5)
Q=1

This sum gives N2 (L) = L3/3+5L/3 i.e. N2B(L) ~
L3. We verify this scaling numerically in Fig. 4b. The
good agreement between the counting of minimal prod-
uct density matrices and the observed number of scar
states gives us additional confidence in our interpreta-
tion. Note that the scar states constitute only a tiny
fraction of the total Hilbert space, which has 3% states,
most of which are thermal.

Discussion and Conclusions. In this work, we have
shown how the conservation laws associated with frac-
ton systems, such as conservation of charge and dipole
moment, lead to athermal behavior in the steady states
of a Floquet system. Specifically, for a typical basis of
initial conditions, athermality is manifested in a small
set of states which remain localized under the driving,
while the majority of initial conditions heat up to an
infinite-temperature steady state. We refer to this new
type of athermal state as a “dynamical scar state,” in
analogy with the scar eigenstates observed in Hamilto-
nian systems. These scar states represent a vanishingly
small fraction of the total Hilbert space in the thermody-
namic limit, but are nevertheless experimentally relevant
due to their high overlap with easily prepared product
states. These dynamical scars possess several exotic new
features, such as robustness against driving, insensitiv-
ity to microscopic details, and the presence of agglom-
erated fracton peaks. This novel manifestation of the
scar phenomenon represents a fundamentally new type
of non-ergodic behavior, which we hope may yield more
general insights into the physics of quantum many-body
scars.
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