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We demonstrate the preparation and coherent control of the angular momentum state of a two-
ion crystal. The ions are prepared with an average angular momentum of 7850~ freely rotating at
100 kHz in a circularly symmetric potential, allowing us to address rotational sidebands. By coher-
ently exciting these motional sidebands, we create superpositions of states separated by up to four
angular momentum quanta. Ramsey experiments show the expected dephasing of the superposition
which is dependent on the number of quanta separating the states. These results demonstrate coher-
ent control of a collective motional state described as a quantum rotor in trapped ions. Moreover,
our work offers an expansion of the utility of trapped ions for quantum simulation, interferometry,
and sensing.

Coherent control of the collective motion of trapped-
ion Coulomb crystals is fundamental to their versatility
as a platform for quantum control. Historically, ions have
been trapped in a linear chain with motional modes well-
modeled as harmonic oscillators [1–3]. However, the util-
ity of trapped ions for quantum simulation, fundamental
physics, and sensing can be further expanded by access
to and control over collective motional modes with more
complex dynamics.

For example, consider the motion of a quantum rotor.
The energy spectrum of the angular momentum eigen-
states is quadratic in quantum number, increasing the
complexity possible in Hamiltonian engineering and en-
abling the simulation of rotational dynamics of diatomic
molecules [4–6]. Moreover, the periodic boundary condi-
tions of angular momentum states enable fundamentally
new operations such as the deterministic coherent ex-
change of the ions’ wave functions [7] and the ability to
create interferometry geometries new to ions [8, 9]. Rota-
tional states also have fundamental physics applications
in Aharanov-Bohm style experiments because of their en-
closed area [10, 11] and in observing Hawking radiation
in acoustic analogs of black holes [12, 13]. Finally, ro-
tor states interact with noise in interesting ways due to
their extended size and spatial symmetry which could
have applications in metrology and sensing [14–19].

In this paper, we describe control over the angular mo-
mentum eigenstates of a 2D rotor formed by a pair of
40Ca+ ions in a cylindrically symmetric surface-electrode
Paul trap. Through classical preparation of a high an-
gular momentum state, we are able to spectrally sepa-
rate densely spaced angular momentum transitions into
groups according to the number of angular momentum
quanta involved in the transition. We optically drive a
group of sidebands and observe Rabi oscillations which
demonstrate that the transitions are coherent and match
our presented theory. Additionally, Ramsey experiments
show the expected dephasing due to the non-linearity of

the energy of rotor states, a phenomenon not present
in harmonic oscillator superpositions. The capability to
produce coherent superpositions of angular momentum
states not only expands the toolbox of trapped ion ex-
periments but also brings the capabilities of trapped ions
to the study of molecular dynamics, periodic systems,
and rotational sensing.

Our rotor is produced by loading two ions into a trap
with a single radio-frequency (RF) null. In this potential,
the mutual Coulomb repulsion of the ions repels them
from the center and they form a small ring. The poten-
tial is created 184 µm above the surface of the trap shown
in Fig. 1a by applying RF to the second circular electrode
and grounding the other two circular electrodes [20].
Eight compensation electrodes surrounding the RF and
ground electrodes are used to compensate both dipole
and quadrupole stray electric fields at the trapping lo-
cation, thereby creating a cylindrically symmetric, 3D
harmonic potential [21]. If all in-plane DC quadrupole
potentials are compensated, the two horizontal trap fre-
quencies are degenerate, ωx, ωy = 2π × 845 kHz, while
the vertical trap frequency ωz ≈ 2ωx.

In this potential, two ions form a crystal with an equi-

librium radius of r0 =
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= 3.13 µm where

m is the mass of 40Ca+. Such a crystal has no preferred
angular orientation within the xy-plane. Ignoring micro-
motion and separating out the common mode harmonic
motion, the in-plane Hamiltonian of two ions in cylindri-
cal coordinates is
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where ρ and φ are the radial and angular polar co-
ordinates, respectively, in the xy-plane. Within the
approximation of harmonic confinement in the radial
direction, this is equivalent to the Hamiltonian of a
trapped diatomic molecule with its motion confined to
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FIG. 1. (a) False color optical image of the trap center. The center electrode and the outer ring are grounded while RF is
applied to the second circular electrode (red). Voltages used to create the rotating quadrupole, the fields they produce, and the
relative orientation of the ions (not to scale) are shown on the figure. (b) Frequency of angular momentum transitions relative
to the carrier for a stationary ion ring, each separated by only a few Hz. Transitions are labeled by their initial and final state
quantum numbers. Heights are proportional to occupation of the initial state quantum number for σ` = 2. (c) Frequency of
angular momentum transitions relative to the carrier for an ion ring rotating at 100 kHz. Groups of lines are separated by ωrot

with width in frequency space of 4ωr,effσ`∆`.

two dimensions [22], where the interatomic potential is
formed by the harmonic confinement of the trap field
and the Coulomb repulsion. This Hamiltonian is a
semi-rigid rotor in the angular coordinate φ with radius

r =
[

e2

16πε0
1

m(ω2
x−ω2

rot)

]1/3
≈ r0

(
1 +

ω2
rot

3ω2
x

)
where ωrot is

the angular frequency of the rotor, and a harmonic oscil-
lator with frequency

√
3ωx in the radial coordinate ρ−r.

These modes of motion are coupled to each other by a
Coriolis term which is small if ω2

rot � ω2
x. In this approx-

imation, the angular eigenfunctions are Y`(φ) = 1√
2π
ei`φ

with energies E` = ~(ωr`
2 − D`4), where ` is the quan-

tum number labeling the angular momentum states, ωr =
~

4mr20
= 2π × 6.43 Hz is the fundamental frequency scale

of the rotor, and D = 4ω3
r /3ω

2
x = 2π×0.50 nHz is a small

perturbation to the energy caused by centrifugal distor-
tion of the rotor radius. The quantum rotor exhibits
nonlinear energies and dynamics that are fundamentally
different from those of a harmonic oscillator and is a pre-
viously unexplored mode of motion in ion crystals.

The motional modes of trapped 40Ca+ ions are co-
herently controlled by optically addressing the transi-
tion from the electronic ground state, |S〉 ≡ 2S1/2, to a
long-lived, metastable state, |D〉 ≡ 2D5/2, on the spec-
tral sidebands created at the motional eigenfrequencies
of the ion crystal [23–25]. To allow coherent control,
these sidebands must be spectrally narrow and isolated.
While a harmonic oscillator mode creates sidebands at
integer multiples of its characteristic frequency, a rigid
rotor mode has a nonlinear energy spectrum and thus
spectral sideband addressing is more complicated. To

coherently manipulate the ion crystal’s angular momen-
tum states, the motional sideband corresponding to the
transition from |`〉 to |` + ∆`〉 must be resolved in fre-
quency space from all other ∆` transitions for all ini-
tial |`〉 which have appreciable population. In a thermal
state, angular momentum states are populated as a Gaus-
sian centered about `0 = 0 parameterized by a standard
deviation σ` related to the temperature. At the Doppler
limit (0.52 mK for 40Ca+), σ` = 920. Fig. 1b shows
the expected transition frequencies of only ∆` = {0, 1, 2}
rotational transitions weighted by the initial state’s oc-
cupation, under the condition `0 = 0 and σ` = 2 for
illustration. Individual lines of various ∆` transitions
are interspersed amongst each other. To address an indi-
vidual line, the stability of the energy difference between
states and the laser linewidth would both need to be well
under 10 Hz, which is prohibitively narrow.

If instead the population of the angular momentum
states is centered at a sufficiently large angular mo-
mentum ~`0, corresponding to a rotation frequency of
ωrot = ~`0/2mr2, transitions spectrally separate from
each other grouped by their order ∆`, as shown schemat-
ically in Fig. 1c for ωrot = 2π × 100 kHz and `0 = 7850.
While the individual lines remain separated by only
2∆`ωr,eff ≈ ∆`× 2π × 12.5 Hz where ωr,eff = ωr − 6D`20,
each group as a whole becomes individually addressable
as long as the separation between these groups ωrot is
significantly greater than the group’s width in frequency
space 4ωr,effσ`∆`. For this reason, the parameter σ` de-
termines both how narrow each transition is and which
transitions can be resolved. We use σ` to characterize the
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width of the state in angular momentum space through-
out this paper.

To achieve control over individual ∆` transitions we
prepare a rotating (ωrot = 2π × 100 kHz, `0 = 7850)
and cold (σ` = 44) two-ion crystal in three stages. First,
we break the angular symmetry of the trapping potential
with a static, in-plane quadrupole generated by voltages
V cos (α0 + αi) applied to each DC electrode (shown in
Fig. 1a) where αi is shifted by π/4 relative to its coun-
terclockwise neighboring electrode. This pins the orien-
tation of the ion crystal and creates an in-plane tilt mode
of up to ωtilt = 2π × 280 kHz, the orientation of which
is controllable by α0. Next, with the ions pinned, the
phase α0 of the in-plane quadrupole is ramped to ac-
celerate the angular orientation of the quadrupole to a
final angular velocity of 100 kHz in a time of 50 µs. The
voltages are sourced by a single arbitrary waveform gen-
erator applying an accelerating sine wave whose phase is
shifted appropriately for each electrode with a custom-
built circuit. Finally, after reaching the target angular
velocity, the quadrupole continues to rotate at the fi-
nal speed while the amplitude is reduced linearly to zero
over 1 ms. When the rotating quadrupole is completely
turned off, the ions continue rotating due to conserva-
tion of angular momentum, and now do so in the desired
symmetric potential. Experimentally, the quoted spin-
up and release times give us the narrowest σ` within our
technical limitations. It is critical to cool the in-plane
tilt mode to the ground state prior to spin-up, since the
thermal occupation of the tilt mode directly maps onto a
Gaussian distribution of angular momentum states dur-
ing the release process. We find that σ` ≈ 400 when only
Doppler cooling is performed on the pinned crystal which
only separates transitions up to ∆` = 4 by two standard
deviations. With the addition of resolved sideband cool-
ing of the in-plane tilt mode, σ` is reduced to 44, allowing
us to potentially resolve transitions up to ∆` = 42.

To control the quantum angular momentum state of
the ion crystal, we address a group of rotational side-
bands of the |S〉 → |D〉 transition (729 nm), all cor-
responding to the same change in angular momentum
state, ∆`. In the rotating wave approximation, the rela-
tive coupling strength between the states |`〉 and |`+∆`〉
is given by

〈`+ ∆`|eikxx|`〉 = J∆`(kxr) (2)

where kx = k cos θ is the projection of the laser’s
wavevector in the plane of the rotor for an angle θ be-
tween the wavevector and the rotor plane and J∆` is a
Bessel function of the first kind of order ∆`. The maxi-
mum sideband order ∆`max at which there is still signif-
icant sideband coupling strength is proportional to the
Doppler shift observed by the laser from the rotating
ions, and roughly given by ∆`max ≈ kxr ≈ 27 if θ = 0.
In order to consolidate the oscillator strength into a few

(a) 

(b) 

FIG. 2. (a) Measured spectrum of the ion crystal prepared
at 100 kHz. The theory curve is obtained by fitting for the
laser angle using Eq. 2 and an empirical rotation frequency of
101 kHz. (b) Rabi oscillations performed on the fourth order
angular momentum sideband of a 100 kHz rotating crystal.
The two curves are measured with different laser powers but
the same rotation preparation. The data are fit for Rabi fre-
quency, given by Ω in the legend and a shared σ` = 44.3±1.0.

transitions, the excitation laser is aligned nearly perpen-
dicular to the rotation plane to reduce ∆`max.

A spectrum around the |S〉 → |D〉 transition (Fig. 2a)
after rotation preparation shows sidebands at integer
multiples of 101 kHz, a 1% offset from our target fre-
quency frot. We believe this offset is due to a small dia-
baticity in the spin-up process. We fit the spectrum with
the coupling strengths from Eq. 2 and see that this spec-
trum is consistent with the addressing laser positioned
at an angle of θ = 82.4◦ with respect to the rotor plane,
where ∆`max ≈ 4.

The magnitude of the coupling matrix element between
angular momentum states |`〉 and |`+ ∆`〉 (Eq. 2), and
therefore the Rabi frequency, is independent of `, while
the energy splitting (and hence the spectral sideband fre-
quency) does depend on `. Therefore, addressing rota-
tional sidebands beginning from superpositions or mix-
tures of many angular momentum eigenstates yields a
sum of Rabi oscillations with slightly different detunings:

P (D) =
∑
`

|c`|2
Ω2

Ω2 + δ2
`

sin2

(
1

2

√
Ω2 + δ2

` t

)
(3)

Here, P (D) is the probability of the ions individually

being excited to the |D〉 state, |c`|2 is the initial popu-
lation of the state |`〉, Ω is the resonant Rabi frequency,
δ` = 2ωr,eff(`0 − `)∆` is the detuning of the transition
from |`〉 assuming the laser is on resonance with the cen-
ter of the distribution `0, and t is the coupling time.
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Taking |c`|2 to be Gaussian distributed implies a spectral
linewidth of γ` = 4ωr,effσ`∆`. As a result, the functional
form of the Rabi oscillations given by Eq. 3 will depend
on the relative values of γ` and Ω. If Ω � γ`, then all
|`〉 → |`+ ∆`〉 transitions are nearly resonant and Rabi
oscillations can be observed with high contrast. Oth-
erwise, there are significant contributions from detuned
transitions and the contrast of the Rabi oscillation is re-
duced. This reduction of contrast is increasingly prob-
lematic with increasing ∆` as the spread of the line in
frequency space increases. This dependence allows us to
infer σ` by fitting Rabi oscillations to Eq. 3. Fig. 2b shows
Rabi oscillations for the same state preparation (constant
σ`) with two different values of Ω for ∆` = 4. For the blue
curve, Ω = 2π × 0.7 kHz < γ` = 2π × 4.4 kHz. The con-
trast of the oscillations is about 25% at the π time and
saturates well below 0.5 excitation. However, with the
same preparation, the red curve with Ω = 2π × 6.7 kHz
shows we can achieve oscillations with over 90% contrast
on fourth order sidebands. The theory matches the data
well for the fit value of σ` = 44.3± 1.0.

The high-contrast state manipulation demonstrated
above allows us to create and probe the coherence of an-
gular momentum superposition states with Ramsey in-
terferometry. Driving a π/2 pulse on a sideband ∆` from
an initial state |Ψ(0)〉 =

∑
` c` |SS, `〉 and waiting for a

time t produces the following superposition:

|Ψ(t)〉 =
1

2

∑
`

c`[|SS, `〉

+ e−2iωr,eff (`−`0)∆`t |SD, `+ ∆`〉
± e−2iωr,eff (`−`0)∆`t |DS, `+ ∆`〉
+ e−4iωr,eff (`−`0)∆`t |DD, `+ 2∆`〉]

(4)

Here we keep track of phases only to first order in ∆`/`
in the rotating wave approximation and we have assumed
perfect π/2 pulses at laser frequency resonant with the
transition in the center of the distribution. This is a sum
over individual manifolds, each corresponding to a single
initial angular momentum eigenstate that acquires phase
at its own rate. Eq. 4 assumes the superposition |Ψ(0)〉
is a pure state though a mixed state would demonstrate
the same dynamics.

If we apply a second π/2 pulse after time t, we ex-
pect a loss of contrast at rate γ` due to the width of the
line in frequency space as the phase evolution of each
superposition beats against one another. Fig. 3 shows
Ramsey experiments on the first and fourth order ro-
tational sidebands for the same state preparation. We
fit these curves to extract σ` and the overall detuning
∆ with no ad-hoc decay factor included. The decay is
predicted only from the beating of different manifolds
of angular momentum eigenstate superpositions against
each other. As expected, the fourth order superposition
dephases four times as quickly as the first order. Fitting

FIG. 3. Ramsey experiment on angular momentum sidebands
for ∆` = 1 and ∆` = 4 with an overall detuning of 6 kHz.
Fits are made with a single σ` for both curves and individual
detunings and Rabi frequencies for each curve as free param-
eters.

the data returns γ`/∆` = 1.08 ± 0.03 kHz and agrees
well for both curves. This corresponds to σ` = 42.1± 1.3
which is also similar to the state distribution observed in
the Rabi oscillations. The dephasing can also be intu-
itively understood in the spatial domain. After driving a
π/2 pulse, two branches of an interferometer exist where
one branch is rotating ∆`×12.5 Hz faster than the other.
Therefore, once the ions have traveled far enough to be-
come spatially separated, the contrast vanishes as they
are no longer able to interfere spatially.

There are many applications for coherent control over
the angular momentum mode of trapped ion systems.
For example, the unique phase evolution between angu-
lar momentum states of a trapped ion crystal can be ex-
ploited for sensing and tests of fundamental physics ax-
ioms. For example, at a Ramsey time trevival = π

ωr,eff∆`
,

the phase of each superposition becomes an integer mul-
tiple of 2π, manifesting as a revival in the contrast of the
excitation. Taking advantage of the symmetrization re-
quirement to create a fully odd or even rotational mode
occupation under particle exchange would induce an ad-
ditional revival at trevival/2, which would demonstrate the
indistiguishability of the two 40Ca+ ions even as they are
separated by 6.3 µm at all times [7, 26].

Moreover, if the rotation frequency could be made
comparable to the trap frequency, the control techniques
presented here could be used to study the regime in which
the rotational mode of the ion crystal is strongly coupled
to the stretch mode through the Coriolis force, allowing
the study of the rotational dynamics of lightly bound
molecules [6, 27]. Currently, the rotation frequency is
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limited to a few hundred kHz by internal electronic fil-
tering. Additionally, the final occupation of angular mo-
mentum states is limited by the release step of the rota-
tional mode preparation sequence. With a high precision
voltage source, the ramping of the quadrupole potential
could in principle be optimized to prepare the system in
an angular momentum eigenstate.

In this paper, we have implemented a protocol for con-
trolling the rotational degree of freedom in a symmet-
ric ring ion crystal. Though this work was performed
with two ions, the methods and results presented ex-
tend naturally to larger system sizes. By preparing the
system in a high angular momentum state, we spectro-
scopically isolate transitions that selectively change the
rotational quantum state. We demonstrate that angular
momentum transitions are coherent and that their be-
havior agrees well with theory. This demonstrates the
basic control one needs to add rotational states to the
toolbox available to the trapped ion community. With
control over these shared motional states, we can now
consider more complex Hamiltonian engineering, simula-
tion of more diverse systems, and new tests of fundamen-
tal physics.
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