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The Kibble-Zurek mechanism predicts formation of topological defects and other excitations that
quantify how much a quantum system driven across a quantum critical point fails to be adiabatic. We
point out that, thanks to the divergent linear susceptibility at the critical point, even a tiny symmetry

breaking bias can restore the adiabaticity. The minimal required bias scales like τ
−βδ/(1+zν)
Q , where

β, δ, z, ν are the critical exponents and τQ is a quench time. We test this prediction by DMRG
simulations of the quantum Ising chain. It is directly applicable to the recent emulation of quantum
phase transition dynamics in the Ising chain with ultracold Rydberg atoms.

In this paper we investigate the interplay of the Kibble-
Zurek (KZ) theory of the dynamics of symmetry-breaking
quantum phase transitions [1–3] with the extreme sensi-
tivity of a quantum critical system to a perturbation by
a symmetry breaking bias field.

There are two complementary motivations of our
study. The first one is more fundamental (but more dis-
tant). It stems from the discussion textbooks usually
offer to justify symmetry breaking phase transition – see
e.g. Ref. 4. As is noted there, when the relevant ther-
modynamic potential is symmetric, there is no reason
for the system to settle in a particular broken symmetry
post-transition state. This leads to a conceptual diffi-
culty – why does the symmetry break? In textbooks it
is usually addressed by introducing an external bias that
favors a particular post-transition state (e.g., a magnetic
field that biases spins during a ferromagnetic phase tran-
sition). That field is eventually allowed to vanish, and
if the thermodynamic limit is attained before the bias
disappears, one ends up with a broken symmetry phase
– same symmetry broken in the same way throughout
the whole infinite volume. It is however important to at-
tain the thermodynamic limit (infinite system size) prior
to turning off the bias. Similar considerations apply to
quantum phase transitions. For instance, in the quan-
tum Ising model in transverse field the ground state is
degenerate, spanned by the symmetric superposition of
the two obvious broken symmetry ferromagnetic states.

In contrast to that “textbook” motivation (which deals
with a sequence of equilibria) one is often (e.g., in the
quantum information processing context) interested in
reaching states that are similarly ordered, but attain-
ing it reasonably quickly. Thus, the timescale is of the
essence. One can expect that rapid transitions will intro-
duce disorder – excitations and defects. This is indeed
the conclusion of KZM for quantum phase transitions.
A second motivation for our study is therefore to con-
sider whether an external bias – longitudinal field in the
transverse field quantum Ising model – may effectively
suppress formation of such defects, and hence, be used
to evade spurious excitations. This is very much in the
spirit of the “shortcuts to adiabaticity” [5]. It is also of
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FIG. 1. In (a), phase diagram for the ferromagnetic Ising
model in Eq. (4). Transverse field g⊥ is slowly driven from
a para- to a ferromagnetic phase (dashed green line) close to
the continious Ising critical point (red dot). Red dashed line
indicates first order transition between differently oriented fer-
romagnetic states. In (b), bias g‖ opens up a gap near the
critical point. Excitation energy at zero momentum is calcu-
lated using uniform matrix product states ansatz directly in
the thermodynamic limit [25, 26]. In the inset we show the
scaling of minimal gap as a function of the bias. For the pre-
sented range we fit ∆‖ ∝ g0.545‖ , where the exponent is close
to the expected zν‖ = 8/15 ≈ 0.5333 – and leaning towards
it for smaller g‖.

interest because – in the experiments that test dynam-
ics of quantum phase transitions (see e.g., Ref. 6) one
may be concerned whether the symmetry breaking was
truly spontaneous or whether it was in fact “suggested”
by external perturbations.

The classical KZ mechanism (KZM) was recognized as
a general theory of the dynamics of phase transitions and
verified by numerical simulations [7] and laboratory ex-
periments in various condensed matter systems [8]. More
recently, it was generalized to quantum phase transitions
[9–13]. Theoretical advances [14] and experimental tests
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[6, 15, 16] followed. The recent experiment, with Ryd-
berg atoms [6], is an accurate quantum simulation of the
exact solution in the quantum Ising chain [11].

In quantum KZM a system initially prepared in its
ground state is smoothly ramped across a critical point
to the other side of the phase transition. A distance
from the critical point – measured by a dimensionless
parameter ε – can be linearized close to the criticality as

ε(t) =
t

τQ
. (1)

Here τQ is the quench time. Initially, far from the transi-
tion, the evolution is adiabatic and the system follows its
adiabatic ground state. The adiabaticity fails at −t̂ when
the rate of the transition, ε̇/ε = 1/|t|, becomes faster than
the gap between the ground state and the first relevant
excited state. The gap closes like ∆ ∝ |ε|zν , where z and
ν are the dynamical and correlation length exponents, re-
spectively. From the equation 1/|t| ∝ |t/τQ|zν we obtain

t̂ ∝ τzν/(1+zν)Q and a corresponding ε̂ = t̂/τQ ∝ τ1/(1+zν)Q .
In first impulse approximation, the ground state at −ε̂,
with a correlation length

ξ̂ ∝ τν/(1+zν)Q , (2)

remains the state of the system until +t̂, when the evolu-
tion becomes adiabatic again. In this way ξ̂ becomes
imprinted on the initial state for the final adiabatic
stage of the evolution. KZM can be characterized by
a length- and timescale, ξ̂ and t̂ ∝ ξ̂z, both diverging
when τQ →∞.

Due to the diverging linear susceptibility at the crit-
ical point, even a tiny symmetry breaking bias g‖ can
derail the KZM. It induces a non-zero magnetization

M‖ ≡ 〈σz〉 ∝ g
1/δ
‖ that in turn implies a non-zero gap

∆‖ ∝ g
zν/βδ
‖ and a finite correlation length ξ‖ ∝ g

−ν/βδ
‖ .

Here δ and β are critical exponents, where we follow the
standard convention, see e.g. Ref. 17. In the Ising uni-
versality class ν/βδ = ν‖ = 8/15 is the famous Zamolod-
chikov’s correlation length exponent [18]. At odds with
the KZM assumptions, neither the gap closes nor the cor-
relation length diverges at the critical point. Therefore,
we expect that when the bias is strong enough, i.e., for
ξ‖ � ξ̂ or, equivalently,

τQ � g
−(1+zν)/βδ
‖ . (3)

then the ramp (1) becomes adiabatic. In the opposite
regime, for small τQ, KZM should work as usual because
−ε̂, when the state freezes out, is too large for the tiny
bias to have anything more than a perturbative effect.

In the following we test this prediction with DMRG
simulations in the transverse field quantum Ising chain.
The chain is not only the standard theoretical workhorse
– exactly solvable without the bias [11] – but also the sub-
ject of a recent experiment [6] testing KZM in a chain

of 51 Rydberg atoms emulating 51 spins. In this set-
up the bias is a difference between a contribution from
the Rydberg blockade and one due to laser detuning. A
fine-tuning is necessary to nullify the net bias. One of
the aims of this work is to estimate how accurate the
fine-tuning has to be for the bias to become negligible.
Already the condition (3) provides a scaling relation be-
tween the minimal adiabatic quench time and the bias.
With the Ising exponents (z = ν = 1, β = 1/8, δ = 15)

it reads τQ � g
−16/15
‖ . Our simulations substantiate the

relation with a numerical prefactor that makes it directly
applicable to the experimental set-up [6].

The bias may be an obstacle for testing KZM but for
adiabatic quantum state preparation it is the KZM itself
that is an obstacle preventing adiabatic passage across
quantum criticality. The importance of this roadblock
was recognized by leading experimental groups, see e.g.
Ref. 19, and multiple strategies – under an umbrella
name “shortcut to adiabaticity” – were devised in or-
der to bypass it, see a recent review in Ref. 5. Their
design often requires exact solution of the model that is
either not possible or, if possible, the optimal strategy
is not easy to implement [20]. In contrast, in evolution
across a symmetry-breaking phase transition, the sym-
metry breaking bias is a robust shortcut to adiabaticity.
Excitations.— We consider the quantum Ising chain in

both transverse and longitudinal magnetic fields:

H = −
∑
n

[
σxnσ

x
n+1 + g⊥σ

z
n + g‖σ

x
n

]
, (4)

It has an isolated critical point at (g⊥, g‖) = (1, 0) be-
tween the paramagnetic and ferromagnetic phases, see
Fig. 1a. We ramp the transverse field as

g⊥(t) ' 1− t

τQ
, (5)

from +∞ to 0, i.e., from an initial ground state deep in
the paramagnetic phase, across the critical g⊥ = 1, to
the ferromagnetic phase [21]. Here we apply also a small
bias:

g‖(t) = const. (6)

The question is how strong g‖ has to be in order to bypass
the critical point (g⊥, g‖) = (1, 0) adiabatically.

The case of g‖ = 0 is exactly solvable [11]. For slow
enough quenches final density of kinks

nex(g⊥ = 0) =
1

2π
√

2τQ
∝ ξ̂−1. (7)

Moreover, during the KZ stage of the evolution, between
±t̂, the density of quasiparticle excitations satisfies a KZ
scaling hypothesis [22, 23]

nex(t) = ξ̂−1Fnex

(
t/ξ̂z

)
, (8)
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FIG. 2. Scaled density of excitation energy ξ̂d+zw(0) =

τQw(0) in function of ξ̂/ξ‖ =
√
τQg

8/15

‖ for different longitu-

dinal biases g‖, see Eq. (9). Comparison of the two length

scales
√
τQg

8/15

‖ ≈ 1 marks a crossover from the KZ regime

with w(0) ∝ τ−1
Q to an adiabatic regime with w(0) ∝ τ−2

Q .
Dashed lines provide the guidance for an eye for the expected
scaling (slope) on the rescaled plot.

where Fnex
is a non-universal scaling function. In other

words, when a scaled density ξ̂ · nex(t) is plotted as a

function of scaled time s = t/ξ̂z for different τQ, the
plots collapse to the common scaling function Fnex

(s).
With the bias the model is not exactly solvable and the

quasiparticles become ill-defined. We must instead rely
on density of excitation energy w [12]. During the KZ
stage, we expect it to satisfy a scaling hypothesis [23]:

w(t) = ξ̂−d−zFw
(
t/ξ̂z, ξ̂/ξ‖

)
. (9)

We test it by numerical simulations with uniform ma-
trix product states employing the time-dependent vari-
ational principle [24, 25]. Its inverse-free formulations
in the thermodynamic limit allows us to investigate long
evolution times. Figure 2 shows a scaled energy density
at the critical point, ξ̂d+zw(0) = τQw(0), in function of

ξ̂/ξ‖ =
√
τQg

8/15
‖ . In accordance with the hypothesis

(9), the plots for different biases collapse to a common

scaling function. Furthermore, near
√
τQg

8/15
‖ ∼ 1 we

can clearly see a crossover from the KZ regime, where
w ∝ ξ̂−d−z = τ−1Q , to the adiabatic regime where the

decay with τQ is faster: w(0) ∝ τ−2Q g
−16/15
‖ .

In order to explain the adiabatic power law, note
first that the gap near the critical g⊥ = 1 scales like

∆‖ ∝ g
zν/βδ
‖ , see Fig. 1b. This is the “closest approach”

gap at the center of the Landau-Zener anti-crossing. The
whole anti-crossing takes place between ±ε‖. Here ε‖ is

a half-width of the anti-crossing where ε−ν‖ ∝ ξ‖. There-

fore, the whole anti-crossing takes time τ
‖
Q ∝ τQε‖ and

the excitation probability at the anti-crossing center is

p ∝
(

∆‖τ
‖
Q

)−2
. Consequently, the excitation energy
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FIG. 3. In (a), the final density of kinks at the end of the
ramp, g⊥ = 0, in function of τQ. Different colors correspond
to different longitudinal biases g‖. In (b), the scaled final

density of kinks ξ̂ · nex(g⊥ = 0) in function of the ratio ξ̂/ξ‖.
There is a clear crossover from the KZ scaling, nex(g⊥ = 0) ∼
ξ̂−1 = τ

−1/2
Q , to an exponential decay in the adiabatic regime.

is p∆‖ ∝ ∆−1‖ τ
‖
Q

−2
. The energy multiplied by density

of available excitations, ξ−1‖ , becomes the excitation en-

ergy density w(0) ∝ ξ−1‖ ∆−1‖ τ
‖
Q

−2
= τ−2Q g

(ν−zν−2)/βδ
‖ =

τ−2Q g
−16/15
‖ .

The energy scaling hypothesis (9) demonstrates the
crossover from the KZ to the adiabatic regime, but it
is not applicable when a constant g⊥ = 0 is considered
instead of a constant t/ξ̂z, see Ref. 23. At the final
g⊥ = 0, for a weak bias the energy density becomes
approximately equal to the density of kinks in the fi-
nal ferromagnetic state, and in the experiments it is the
kinks, rather than the energy, that are directly counted
[6]. Therefore, in Fig. 3a we show the final density of
kinks as a function of the quench time τQ for different
bias fields g‖. For any given bias we find that when τQ is

small enough, then the kink density scales as ξ̂−1 ∝ τ−1/2Q

like in the unbiased quantum Ising chain (7). For longer
τQ the dependence crosses over to an exponential decay
and the crossover value of τQ decreases with the bias.
These observations are corroborated by Fig. 3b showing
the scaled final density of kinks, ξ̂ · nex(g⊥ = 0), in func-

tion of ξ̂/ξ‖. The plots for different τQ approximately
collapse. The collapse improves for weaker biases when
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FIG. 4. In (a), we show scaled longitudinal magnetiza-

tion g
−1/δ

‖ M‖(0) in function of ξ̂/ξ‖ for different biases, see

Eq. (11). The plots collapse to a common scaling function

FM
(

0, ξ̂/ξ‖
)

, in agreement with the dynamical scaling hy-

pothesis. In the KZ regime, for relatively slow τQ, the scaling
function is a power law with an exponent close to 1.75 (dashed
line). In (b), we show magnetisation at the end of the quench
M‖(g⊥ = 0).

the kink density can be identified with the excitation en-
ergy more closely. In this limit the exponential decay in
the adiabatic regime can be fitted [21] with

nex(g⊥ = 0) ≈ Aτ−1/2Q e
−aτQg16/15‖ , (10)

where A ≈ 0.34, a ≈ 6.89. The crossover to the adiabatic

regime happens for τQ ≈ a−1g−16/15‖ ≈ 0.145g
−16/15
‖ .

Longitudinal magnetization.— A new feature intro-
duced by the bias is a non-zero longitudinal magneti-
zation. In the ferromagnetic phase, g⊥ < 1, an infinites-
imal bias is enough to induce a spontaneous magneti-
zation removing degeneracy between two ferromagnetic
groundstates, but the magnetization is strong already at

the critical g⊥ = 1, where M‖ ∝ g
1/δ
‖ . This power law

motivates a dynamical scaling hypothesis,

M‖(t) = g
1/δ
‖ FM

(
t/ξ̂z, ξ̂/ξ‖

)
, (11)

during the diabatic stage between ±t̂. In Fig. 4a we show

scaled g
−1/δ
‖ M‖(0) in function of ξ̂/ξ‖ for different biases
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FIG. 5. Here M‖ and nex are, respectively, the final mag-
netization and final density of kinks at g⊥ = 0. (1 −M‖) is
twice the density of spins pointing down, n↓. The plot shows
the ratio (1−M‖)/nex = 2n↓/nex in function of τQ for differ-

ent biases g‖. Here, we only show points where nex > 10−5,
similarly as in Fig. 3a.

and find that the plots indeed collapse to a common scal-

ing function FM

(
0, ξ̂/ξ‖

)
. As for the excitation energy,

we can clearly distinguish two regimes. In the adiabatic
one for relatively slow transitions, the magnetization fol-

lows its static value ∝ g
1/δ
‖ independent of τQ. In the

KZ regime for relatively fast transitions, the collapsed
scaling function is a power law that follows from KZM.

In KZM the state freezes out at −ε̂ ∝ −τ−1/(1+zν)Q ,

where the linear susceptibility is χ ∝ ε̂−γ with γ being
the susceptibility exponent. Its magnetization freezes as

M‖ ∝ g‖χ ∝ g‖τ
γ/(1+zν)
Q = g‖τ

7/8
Q . (12)

Here we used γ = 7/4 for the Ising model. Therefore,
given the scaling relation γ = β(δ− 1), in the KZ regime

of Fig. 4a we should expect a power law M‖g
−1/δ
‖ ∝

(ξ̂/ξ‖)γ/ν and, indeed, we can see that the exponent of
this power law is close to γ/ν = 1.75.

The final g⊥ = 0 is beyond applicability of the scaling
hypothesis. Still, plots of M‖(g⊥ = 0) in function of ξ̂/ξ‖
in Fig. 4b nearly collapse – note slightly faster ordering
for small fields than the one provided solely by the scaling
hypothesis. The plot shows a crossover from the KZ to
the adiabatic regime. In the latter there is almost full po-
larization, M‖(g⊥ = 0) ≈ 1. Almost all spins are pointing
up except for a small fraction, n↓ = [1−M‖(g⊥ = 0)]/2,
pointing down. The down-spins appear in clusters of ad-
jacent sites. Each cluster is limited by an anti-kink and
a kink on its left and right end, respectively. Figure 5
shows that in the adiabatic limit n↓ tends to twice the
density of kinks nex(g⊥ = 0) implying the cluster size
1, i.e., there are isolated down spins in the majority of
spins pointing up. The cluster size increases with de-
creasing τQ until it reaches a maximum at the crossover
to the KZ regime. In the KZ regime, where n↓ ≈ 1/2 and



5

nex(g⊥ = 0) ∝ ξ̂−1, the ratio n↓/nex(g⊥ = 0) ∝ √τQ.

Conclusion.— We demonstrated that τQg
(1+zν)/βδ
‖ ∼

1 marks a crossover between the Kibble-Zurek and
adiabatic regimes for, respectively, faster and slower
quenches. Depending on where one is aiming, the
crossover means that either a tiny symmetry-breaking
bias is enough to make a ramp across a quantum critical
point adiabatic or, equivalently, it shows how accurately
the bias has to be tuned to zero in order to observe the
KZ mechanism unperturbed. The final longitudinal mag-
netization crosses over from a full polarization deep in the

adiabatic regime to a power law M‖ ∝ g‖τ
γ/(1+zν)
Q deep

in the KZ regime.

Note added. — After this work was completed an ex-
perimental paper [27] appeared where analogous effect of
an external bias is observed in a classical transition in
superfluid 3He.
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