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Recent experimental results have shown that enzymes can diffuse faster when they are in the
presence of their reactants (substrate). Such faster diffusion has been termed enhanced diffusion.
Fluorescence correlation spectroscopy (FCS), which has been employed as the only method to make
these measurements, relies on analyzing the fluctuations in fluorescence intensity to measure the
diffusion coefficient of particles. Recently, artifacts in FCS measurements due to its sensitivity to
environmental conditions, have been evaluated, calling prior enhanced diffusion results into question.
It behooves us to adopt complementary and direct methods to measure the mobility of enzymes.
Herein, we use a technique of direct single-molecule imaging to observe the diffusion of individual
enzymes in solution. This technique is less sensitive to intensity fluctuations and deduces the
diffusion coefficient directly based on the trajectory of the enzyme. Our measurements recapitulate
that enzyme diffusion is enhanced in the presence of its substrate and find that the relative increase
in diffusion of a single enzyme is even higher than those previously reported using FCS. We also use
this complementary method to test if the total enzyme concentration affects the relative increase in
diffusion and if enzyme oligomerization state changes during its catalytic turnover. We find that the
diffusion increase is independent of the total concentration of enzymes and the presence of substrate
does not change the oligomerization state of enzymes.

PACS numbers: 82.39.k, 87.16.Uv, 82.60.Hc

Enzymes are reactive nano-scale biomolecules that use
energy to perform a variety of tasks required for the basic
functions of cells. Enzymes catalyze numerous reactions
that are essential to maintain cellular temperature, basic
metabolism, and active mixing of the crowded and visco-
elastic environment inside cells [1, 2]. When enzymes are
bound to the surface of nano-scale or micro-scale colloidal
particles, these particles become active and self-propelled
in the presence of reactant molecules (substrate) [3–5].
Thus, enzymes have been shown to act as a source of
propulsion to move large-scale objects in aqueous media.
Recent experimental studies have demonstrated that

enzymes could diffuse faster in the presence of their corre-
sponding enzymatic substrates, which is termed enhanced

diffusion [6–13]. Prior studies of enhanced diffusion mea-
sured a relative increase in the diffusion coefficient from
20% to 80%, depending on the enzyme type used and
the substrate concentration [6–13]. A major drawback of
prior measurements is that they all used a single method:
fluorescence correlation spectroscopy (FCS). In FCS, the
diffusion coefficient is determined by measuring and ana-
lyzing the autocorrelation function of the fluctuations in
fluorescence intensity due to particle motion. Although
FCS is referred to as a single-molecule technique, the
measurement often relies on signal from several particles
[14]. Further, it is difficult for FCS to detect if diffusion is
anomalously fast (super-diffusive) or slow (sub-diffusive)
because it typically does not report on the mean squared
displacement of the particles [15].
A recent publication evaluated possible artifacts of

FCS measurements on enzyme diffusion [13]. They

demonstrated that enzymes at low concentration can dis-
sociate into smaller subunits thus causing an increase in
diffusion coefficient, but this oligomerization state change
cannot be detected by FCS. They also described that free
dyes remaining in solution and the binding between en-
zyme and substrate can affect the measured autocorre-
lation functions, which subsequently impacted the deter-
mination of diffusion rates [13]. Experts agree that in-
terpretation of autocorrelation curves is complicated and
requires modeling to fit properly. Yet, prior reports all
have fit data with the assumption of normal, free diffu-
sion of enzymes. Thus, it is imperative that these results
are verified and recapitulated with distinct experimental
methods. Here, we use direct single molecule imaging
to visualize the trajectories of diffusing enzymes in solu-
tion over time, calculate the mean squared displacements
(MSD), test if the enhanced diffusion is anomalous, and
determine the diffusion coefficients. Our method has the
added value that it is truly single molecule and mobility
increases are obvious by eye.
Our single particle tracking experiments are performed

with total internal reflection fluorescence (TIRF) mi-
croscopy (Fig. 1A) using a custom-built laser system
(488 nm, 638 nm) constructed around a Nikon Ti-E mi-
croscope with a 60x, 1.49 numerical aperture TIRF objec-
tive and 2.5x magnification prior to the EM-CCD camera
(Andor). We directly observe the diffusing trajectory of
each individual enzyme by recording at 8 - 20 frames/s
(Fig. 1B,C). The enzyme used is urease from Jack Bean
(TCI Chemicals), a fast, highly exothermic enzyme, that
breaks down its substrate, urea, into ammonia and car-
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bon dioxide. Urease is a hexamer which we fluorescently
label to a ratio of one fluorophore per monomer, on av-
erage, using a commercially available protein labeling kit
(Thermo Fisher). Enzymes are blocked from sticking to
the silanized hydrophobic cover glass by adding Pluroinc
F127 block-copolymer to create a polymer brush on the
glass surface. The lifetime of the fluorescence is extended
by adding glucose oxidase, catalase, and glucose as an
oxygen scavenging system, which is exactly the same for
all experiments. TIRF microscopy can only image the
first 300 nm distance from the cover glass (Fig. 1A),
so all experiments include the addition of 0.6% 88 kD
methylcellulose as viscous agent to slow down the dif-
fusion. The methylcellulose concentration is in the di-
lute regime, and polymers are not cross-linked (Fig. 1A).
Addition of the methylcellulose slows down the absolute
diffusion coefficients we measured by two orders of mag-
nitude, but does not affect the relative changes in dif-
fusion measured or trends of the data. Trajectories of
enzymes are analyzed by an ImageJ/FIJI plugin Parti-
cleTracker 2D/3D [16] (Fig. 1C), and the time-average
mean squared displacement (MSD) is computed for each
trajectory:

〈

(∆ri(t))
2
〉

=
〈

[~ri(τ + t)− ~ri(τ)]
2
〉

τ
.

To test for anomalous diffusion, MSD data are plot-
ted on log-log scale and fit to the power-law equation:
〈

(∆r)2
〉

= Γtα, where t is the lagtime, Γ is the general-
ized diffusion coefficient, and α is the anomalous diffusion
exponent (Fig. 1D). We find that α was on average equal
to one for all data, implying that the diffusion we mea-
sure is not anomalous (Fig. 1D, Fig. S1). Since the MSD
is linear with time, we can then deduce the diffusion co-
efficient, D, from the slope of the MSD plot according
to the normal Brownian motion in 2D:

〈

(∆r)2
〉

= 4Dt,
(Fig. 1D).

In agreement with prior work, we find that urease dis-
plays enhanced diffusion in the presence of its substrate,
urea (Fig. 1D, Supplemental Fig. S1). The change
in mobility is visible directly from trajectories and the
MSD plots (Fig. 1B-D). For our assays, we measure
over 100 single particle trajectories for each experimental
condition to obtain statistically significant data. Diffu-
sion data display a log-normal distribution that could be
plotted and fit with a Gaussian after log-transformation
(Fig. 2A). The mean of the Gaussian fit represents the
median of the original log-normal distribution, which is
then transformed back and used as the effective diffusion
coefficient measured for each case (see Supplemental In-
formation for fits and details on the methods).

Interestingly, we find that the relative increase of the
diffusion coefficient in our single molecule experiments is
significantly higher than those previously reported using
FCS methods [7, 10]. For the highest concentration of
urea we tested (100 mM), we find a ∼ 3 fold increase
in the diffusion constant (Fig. 2B), compared to prior
results that showed only a ∼ 30% increase [7, 10]. Con-
trol experiments performed with green fluorescent pro-
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FIG. 1. A) Experimental setup for single particle imaging of
urease using TIRF (blue) of fluorescent urease (green) in a
chamber with Pluronic F127 (black) coating the surface and
dilute methylcellulose polymers to slow down the mobility
(orange). Radius of gyration of methylcellulose (dashed red
circle, ∼ 30 nm) represented [17]. B) Example trajectories of
single urease enzyme over time i) without urea, and ii) with
urea at 1 mM. Scale bar 5 µm. Time interval given for each
frame. C) Example 2D trajectories displayed as collapsed
images with rainbow scale representing time as given in the
time color bar over 111 frames with i) 0.13 s between frames
for urease without urea, and ii) with 0.08 s between frames for
urease with 1 mM urea. Scale bar 5 µm. D) Time-averaged
MSD plot of each trajectory, fit with a linear equation to
determine the diffusion coefficient, D. Inset: Same MSD data
plotted on log-log scale. Black lines represent the range of α
exponent values: αmax = 1.2, αmin = 0.9. (Red squares:
urease without urea; blue squares: urease with 1 mM urea;
error bars represent the standard error.)

tein and inhibited urease that cannot interact with urea
both show a slight decrease in the diffusion coefficient
in the presence of urea (Supplemental Information, Figs.
S2-4). These controls demonstrate that the enhanced
diffusion of urease is not due to the presence of urea in
solution, but rather to the interaction between urea and
urease.
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FIG. 2. A) Representative probability distribution histograms of log-transformed diffusion data at different urea concentrations:
0 (red region, N = 141), 10 µM (green region, N = 97), 1 mM (blue region, N = 178), 100 mM (purple region, N = 203) and
corresponding Gaussian fit lines 0 (red line), 10 µM (green line), 1 mM (blue line), 100 mM (purple line). B) The normalized
relative increase in the diffusion coefficient (D−D0)/D0, plotted as a function of the urea concentration. Inset shows the same
data plotted on a logarithmic scale. Solid line shows the hyperbolic fit with a characteristic concentration, K. C) i) Cartoon
of 40 nM urease with average spacing between molecules of 400 nm. ii) Cartoon of 90 pM urease with average spacing between
molecules of 3 µm. iii) Diffusion coefficients of urease at 40 nM urease concentration (dark gray bars) without urea (N =
31) and with 1 mM urea (N = 35), or urease at 90 pM (light gray bars) without urea (N = 30) and with 1 mM urea (N
= 36). Error bars are determined from the standard errors of the mean of the Gaussian fits. All fit parameters are given in
supplemental information.

We calculate and plot the relative increase in the diffu-
sion coefficient as a function of urea concentration (Fig.
2B). The data displays a hyperbolic dependence of the

form: (D − D0)/D0 = A ×
[urea]

[urea]+K , where D is the

measured diffusion coefficient, D0 is the diffusion coef-
ficient in the absence of substrate, A is an amplitude,
[urea] is the urea concentration, and K is the charac-
teristic concentration required for 50% activity. The hy-
perbolic relationship represents a well-known biochemi-
cal model for substrate consumption by enzymes, called
the Michaelis-Menten function. We find that the best
fit has K = 30 ± 30 µM (all fit parameters available in
Supplemental Information).

The equilibrium dissociation constant, KD, is the con-
centration required for half of the maximum urea binding
to urease and was previously reported as 250 µM [18].
The Michaelis-Menten constant, KM , is the urea concen-
tration required for half the maximum reaction rate of
urea consumption by urease and was reported as 3 mM
[19]. Comparing our results to these two rate constants,
we find that our data is more similar to the binding coef-
ficient, KD, instead of the reaction turn-over rate, KM .
Several theoretical models have suggested that substrate
binding could change the size or flexibility of enzymes,
driving the difference in the diffusion coefficient [11, 20],
but no model has predicted such a large shift in the dif-
fusion coefficient as we measured here.

Prior works have noticed a correlation between the dif-
fusion coefficient increase and the heat released during
enzymatic turnover [10]. Assuming the enzyme size does
not change during the turnover, in order for the diffusion
coefficient to increase by a factor of 3, as we observed
(Fig. 2B), the temperature would need to increase by

55K locally. This increase was estimated by using the
Stokes-Einstein relation: D = kBT

6πηR , in which the vis-
cosity, η, is also considered as a function of temperature:
η(T ) = 2.4×10−5Pa·s×10247.8K/(T−140K) for water [21].
Using estimation methods described previously [10, 22],
the temperature increase around a single enzyme ranges
from ∆T ∼ 10−11K to 0.09K for urease. All of these es-
timates, described in detail in the supplemental informa-
tion, are too small to account for the factor of 3 increase
in diffusion that we observed.

In prior estimations of temperature changes, the en-
zymes each act as independent sources of heat or activity.
Two recent models have taken collective effects of many
enzymes into account. One is a collective heating model
[22] and another is a collective hydrodynamics model [23].
Both of these models predict that the diffusion rate in-
crease will depend linearly on the total concentration of
the enzymes in solution.

To test the predictions of these collective models, we
repeat our experiments at two different total enzyme
concentrations, 40 nM and 90 pM (Fig. 2C). For both
groups, we keep the concentration of labeled enzyme con-
stant at the single molecule level (90 pM). The average
spacing between enzymes depends on their concentration
in solution, which we estimate as∼ 400 nm for 40 nM and
∼ 3 µm for 90 pM (Fig. 2Ci-ii). We compare the diffu-
sion coefficients for different concentration groups in the
absence of urea or with 1 mM urea (saturating concen-
tration, Fig. 2B). We find no difference in the diffusion
constants between 40 nM and 90 pM concentrations for
either the buffer case or urea case (Fig. 2Ciii). Although
the proportional relationship between diffusion and total
enzyme concentration is not observed in our experiments,
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it is possible that collective phenomena would come into
play at much higher, non-physiological concentrations of
enzymes. Regardless, these collective models cannot ex-
plain the 3-fold increase in diffusion that we observe in
our experiments.

Diffusion coefficients can also be significantly altered
due to the dissociation of enzyme complexes at the low
concentrations used in FCS or single molecule studies, as
described above [13].

Suppose an enzyme with radius R undergoes a change
in size, δR, during its interaction with the substrate,
the liquid viscosity remains the same. From the Stokes-
Einstein equation, the relative change in diffusion can be
written as

∆D

D0
=

1

1 + δR
R

T

T0
− 1. (1)

A positive change in ∆D requires a negative change in
δR, as expected. We can then estimate the size change
of urease in our experiments needed to account for a 3-
fold increase in diffusion. For our experiments, ∆D

D0

∼ 2

and T
T0

≃ 1 from the calculations above. We estimate

that δR ≃ −
2
3R, a 67% loss of radius. Considering that

urease enzymes are hexamers [24], the large increase in
our diffusion measurements would most likely be due to
the dissociation of hexamers to smaller oligomers after
interacting with urea.

Although, this dissociation process cannot be detected
by FCS, it can be directly monitored using our single
molecule imaging method. To directly test the oligomer-
ization state of the urease multimers, we perform sin-
gle molecule photobleaching experiments that reveal the
number of urease monomers within each fluorescent com-
plex [25, 26]. Each urease monomer is covalently la-
beled with one fluorophore, on average, and there are
reported to be 6 monomers per urease complex [24]. We
first mix the labeled urease hexamers with urea at 0 or 1
mM concentration allowing them to react and then affix
them to the cover glass. Binding to the glass stabilizes
their state and makes the local laser illumination and
z-height constant for the entire measurement. We use
TIRF microscopy to image the enzymes without oxygen
scavenging agents, so that the fluorophores photobleach
over time (Fig. 3A).

We count the number of photobleaching steps for each
fluorescent spot, which corresponds to the number of
monomers in each complex, and create a histogram of
the number of bleaching events for each condition (Fig.
3B). Urease complexes never display more than 6 bleach
steps, indicating that the hexamer is the largest oligomer-
ization state. We find that two or three monomers per
complex are the most common states for both 0 and 1
mM urea conditions. If the dissociation of the oligomer
occurs due to the presence of urea, we would expect to see
a large shift in the distribution of the 1 mM urea group
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FIG. 3. A) Two example intensity traces of fluorescent ure-
ase complexes photobleaching over time, showing a one-step
bleach (top) and a three-step bleach (bottom). B) The distri-
butions of photobleaching steps directly report the number of
fluorescent urease monomers in each complex in the presence
of 0 urea (dark gray bars, N = 100) and 1 mM urea (light
gray bars, N = 100).

to lower numbers of bleaching steps. However, we find
no difference between these two distributions according
to the Kolmogorov-Smirnov statistical test (P = 1.0).
From these results, the enhanced diffusion we observe
cannot be caused by changes in the oligomerization state
of the molecule.
There is a distinct possibility that our technique can-

not probe, which is that the shape of the enzyme complex
could significantly change from triangular, as depicted in
crystal structures [24], to linear (Supplemental Fig. S5).
Because asymmetric particles are known to diffuse faster
in the direction parallel to their long-axis [27, 28], shape
changes like these could result in enhanced diffusion by
as much as a factor of two for urease. Such large shifts in
conformation could be probed in future experiments us-
ing Förster resonance energy transfer (FRET) measure-
ments coupled with FCS or single molecule imaging.
In conclusion, we use a distinct method to measure the

diffusion of enzymes to test if the enhanced diffusion pre-
viously reported was genuine or an artifact of the FCS
technique employed. Excitingly, we have verified that
the enhanced diffusion of urease occurs on a truly sin-
gle molecule level. We find that the enhanced diffusion
is Brownian - not anomalous. We also observe a higher
increase in diffusion rates, by a factor of three, in compar-
ison with the ∼ 30% increase previously reported. The
large increase in diffusion is difficult to account for based
on current physical models of heat release or collective
interactions. Finally, single molecule imaging techniques
are able to directly measure the oligomerization state of
the enzymes, excluding the possibility that the enhance-
ment in diffusion we observe is caused by the dissociation
of enzyme multimers. We expect the direct imaging tech-
nique will be a powerful, complementary method to test
the predictions of future models of the mechanism behind
the enhanced diffusion of enzymes.
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López, E. Schäffer, and S. Sánchez, Nano Letters 15,
7043 (2015).

[4] T. Patiño, N. Feiner-Gracia, X. Arqué, A. Miguel-López,
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