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Dense suspensions often become more dilute as they move downstream through a constriction.
We find that as a shear-thickening suspension is extruded through a narrow die and undergoes such
liquid migration, the extrudate maintains a steady concentration φLM

out , independent of time or initial
concentration. At low volumetric flow rate Q, φLM

out is a universal function of Q/r3d, a characteristic
shear rate in the die of radius rd, and coincides with the critical input concentration for the onset
of LM, φcrit

in . We predict this function by coupling the Wyart-Cates model for shear thickening and
the ‘suspension balance model’ for solvent permeation through particles.

Suspensions of granular sized particles (radii a & 5 µm)
are ubiquitous in industrial applications, e.g. molten
chocolate [1], ceramic pastes [2] and cement [3]. Recent
experiments, theory and simulations show that the rhe-
ology of suspensions of granular hard particles at high
concentration is dominated by the formation of interpar-
ticle frictional contacts above some critical ‘onset stress’,
σ∗. Such sliding constraints lead to an increase in viscos-
ity with stress, or shear thickening [4–6].

This new understanding pertains to simple shear, but
more complex geometries prevail in applications. Thus,
constrictions are frequently encountered, e.g., ceramic
paste extrusion through a die or orthopaedic bone ce-
ment injection through a syringe. It is unknown to date
how recent advances can be applied to these more com-
plex flows, where the material is subjected to significant
stress gradients.

Liquid migration (LM) [7], or self filtration [8], is ubiq-
uitous in flow through a constriction: material becomes
more dilute as it moves downstream [9, 10]. The solids
buildup above the constriction impedes flow, and may
lead to jamming. Downstream dilution seriously impacts
material strength and stability in ceramics extrusion, and
may be fatal in medical applications [11].

While many have explored LM in extrusion using spe-
cific formulations [12–17], few have studied the generics
using model systems with well-understood rheology to
probe the underlying physics [8, 18]. We investigate LM
during die extrusion of cornstarch suspensions, Fig. 1(a),
a model granular shear thickening system [19–24] (mean
particle radii a ' 7 µm) with a steady-state rheology
which fits an analytic model [5] for friction-driven thick-
ening [4, 6, 25]. We find that during LM the extruded
material (extrudate) maintains a steady solid mass frac-
tion φLMout , independent of time or initial concentration.
Interestingly, φLMout is a universal function of Q/r3d at low
to moderate volumetric flow rates Q and all die radii rd,
which we relate to the cornstarch rheology.

We extruded cornstarch suspensions at various solid
mass fractions φ (see Supplementary Material for prepa-
ration details [26]) using a custom-built extruder or
orthopaedic syringe (OrthoD Group Ltd.) driven by
a universal testing machine (Lloyd LS5, AmetekTest),

Fig. 1(a). The custom-built extruder used interchange-
able barrels and dies with radii Rb and rd respectively,
while the orthopaedic syringe had fixed Rb = 6.75 mm
and rd = 1.7 mm. Barrel and die lengths were generally
fixed at 40 mm and 10 mm respectively. We drove the
plunger at a fixed speed vp, giving a volumetric flow rate
Q = πR2

bvp, and measured the applied force F .

Extrudate was collected in vials and extrusion ceased
while material still remained in the barrel, which was re-
covered by removing the die geometry. The solid mass
fraction of the extrudate φout and material left in the
barrel φbar was measured by comparing wet and dry
weights [26].

For fixed {Q,Rb, rd}, LM depends on the initial mass
fraction of the suspension φin. With Rb = 6.75 mm,
rd = 1.7 mm and Q = 0.048 mL/s, Fig. 1(b), φin '
φout ' φbar below some critical input mass fraction,
φin . φcritin ≈ 0.49. When φin exceeds φcritin , φout drops
below φin, i.e., LM occurs. We collected a time-lapsed
sequence of extrudates from a suspension undergoing
LM at φin = 0.52, Fig. 1(c). At fixed Q, φout re-
mains essentially constant at some φLMout even as both
φbar, Fig. 1(c), and the driving pressure, Fig.1(d), in-
crease dramatically as LM progresses. Moreover, φLMout
increases with Q, Fig. 1(c). However, once φin increases
beyond φcritin at fixed Q, φout remains constant at φLMout ,
Fig. 1(a). Non-trivially, to within experimental uncer-
tainties, φLMout = φcritin .

While φLMout is independent of compaction within the
barrel, it does depend on the flow conditions during ex-
trusion. As rd decreases from 4 mm to 0.5 mm at fixed
φin = 0.52 and Rb = 7.5 mm, φLMout steadily decreases,
Fig. 2(a). That LM increases in smaller constrictions is
known [14]. Note that our smallest rd ' 70a is well above
the range for arching and clogging in micro-channels [27]
and granular hoppers [28, 29]. As Q increases, φLMout de-
creases to a minimum before increasing. Before the min-
imum, we find data collapse onto a single master curve,
Fig. 2(b), using the scaling variable Q/r3d, which sets the
shear rate scale in the die. This collapse breaks down
at higher flow rates, suggesting a significant change in
extrusion dynamics, so that beyond the minimum LM is
no longer solely controlled by shear in the die. Below, we
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FIG. 1: Onset of LM. (a) Extruder schematic. In (b)-(d),
Rb = 6.75 mm and rd = 1.7 mm. (b) Concentration of the ex-
trudate φout and material remaining in the barrel φbar vary-
ing φin for Q = 0.048 mL/s. (c) φout at varying intervals of
plunger displacements at φin = 0.52, measured from collected
extrudates (blue symbols), and measured post-extrusion φbar

(red symbols). Red lines: calculated φbar, assuming con-
stant φout. Data for Q = 0.024 mL/s (circles, solid line),
0.048 mL/s (squares, dotted line) and 0.095 mL/s (diamonds,
dashed line). (d) Extrusion pressure Pext = F/πR2

b vs plunger
displacement for the same experiments in (c).

focus on the low-Q regime, where dφLMout/dQ ≤ 0.

Experiments at different (φin, Rb), Fig. 3, show that all
liquid-migrated extrudate concentrations fall on a single
master curve, φLMout(Q/r

3
d). Our data span 6.75 mm ≤

Rb ≤ 12.5 mm, i.e. LM is largely unaffected by dynam-
ics within the barrel. Figure 3 also displays samples
that do not exhibit LM (�). Their upper bound defines
the critical input volume fraction, φcritin , reinforcing that
φLMout = φcritin .

The master curve functions as a ‘phase boundary’. Be-
low it, LM does not occur. Above it, the boundary gives
the extrudate concentration. Thus, a sample above this
phase boundary (F, Fig. 3) initially at Φ0 being extruded

at Q/r3d = Γ̇0 gives extrudate at a lower concentration
given by the intersection of a downward ‘tie line’ from F
to the phase boundary; the other end of this ‘tie line’, giv-
ing the barrel concentration, moves towards close packing
to satisfy mass conservation.

The scaling variable Q/r3d suggests a link between LM
and the suspension shear rheology, which we charac-
terized using a rheometer (see Supplementary Material
[26]). Controlling the applied shear stress σ, we measured
the shear rate γ̇ to obtain ηr = (σ/γ̇)/ηs, the suspension

(a)

(b)

FIG. 2: LM under varying flow conditions for φin = 0.52.
(a) Extrudate solid mass fraction, φout(Q), for different die
radii, rd. (b) Liquid-migrated φLM

out replotted against the scal-
ing variable Q/r3d. Dotted lines highlight high-Q data beyond
the minimum in φLM

out .

viscosity relative to that of the solvent (ηs).
Below φ = 0.44, steady-state flow curves ηr(σ) show

continuous shear thickening, Fig. 4(a), and can be de-
scribed by the Wyart-Cates (WC) model for thickening
due to stress-dependent frictional constraints [5]. In this
model, the viscosity is controlled by two limiting concen-
trations: φ0 when all contacts are frictionless, where the
low-stress viscosity η1(φ) diverges, and φm when all con-
tacts are frictional, where the high-stress viscosity η2(φ)
diverges. Though edge fracture and interfacial instabili-
ties [6, 23] limit full access to η2(φ), our data is consistent
with this picture, Fig. 4(b).

Full WC flow curves are given by ηr = [1−φ/φJ(σ)]−2,
where the jamming concentration where ηr diverges,
φJ = φ0[1 − f(σ)] + φmf(σ), varies between φ0 and
φm as σ increases. We model the increasing fraction
of frictional contacts [5, 30] by a stretched exponential

f(σ) = e(−σ
∗/σ)β [6, 23], so that such contacts become

above an onset stress σ∗. We fit our results to this
model, extracting φ0 from η1(φ) and remaining parame-
ters by simultaneously fitting our full set of flow curves
[31], giving φ0 = 0.538 ± 0.003, φm = 0.4401 ± 0.002,
σ∗ = 5.4 Pa± 0.7 Pa and β = 0.62± 0.03. To avoid bias
towards high viscosities we fit log ηr. Though we cannot
always reach η2 at high φ, the inflection in the flow curves
at high-σ is sufficient to constrain φm.

The WC model predicts backward-bending flow curves
for φ ≥ φm, Fig. 4(c), so above a φ-dependent maxi-
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FIG. 3: LM state diagram. (�): φout = φin. Color symbols:
(φc, Q/r

3
d) for various (φin, Rb). For Rb = 7.5 mm, circles:

φin = 0.52, squares: φin = 0.44, upside-down triangles: φin =
0.46 and triangles: φin = 0.54. For φin = 0.52, ‘+’ symbols:
Rb = 6.75 mm, open circles: Rb = 10 mm and ‘×’ symbols:
Rb = 12.5 mm. Same rd color scheme as Fig. 2. Solid lines:
predicted LM phase boundary above φm. Black: calculated
using αγ̇c(φ) and using SBM coupled with the WC model for
any rd/a > 70 (see further Fig. 5(c) and text discussion);
color: calculated using SBM + WC below φm for rd/a = 70
(yellow) and rd/a = 140 (green).

mum shear rate γ̇c(φ) the flow curve is no longer defined
and steady flow is impossible. In stress-controlled exper-
iments above φm, we observe a transition from steady to
unsteady flow, denoted by changing from filled to open
symbols in Fig. 4(c). In the unsteady regime the suspen-
sion viscosity rises sharply, accompanied by large shear
rate fluctuations, Figs. 4(d) [23, 32, 33].

The quantity Q/r3d estimates the highest shear rate
in the die, which for Newtonian flow occurs at the wall
and is given by 4Q/πr3d. A simple hypothesis is therefore
that when 4Q/πr3d exceeds the maximum shear rate for
stability, γ̇c(φ), local stresses become arbitrarily large,
giving steep stress gradients between die and barrel that
would then, as is well known [34, 35], drive migration.
We in fact find that Q/r3d = αγ̇c(φ), with α ≈ 4.8, fits
our phase boundary for φ ≥ φm, Fig. 3(c) (black curve).
The large pre-factor α > 1 indicates that flow in a finite
region near the die must exceed γ̇c(φ) to give measurable
LM. This region will extend both radially inward and
above the die, and since dense suspensions flow with a
blunted velocity profile [36, 37], is likely rather thin.

The stress gradients described above will lead to LM
both radially, from center to periphery in the die, and axi-
ally, from barrel to die, with the latter dominating the di-
lution of extrudate. We now construct a quasi 1-D model
for particle migration along the axis, z, using the suspen-
sion balance model (SBM) [38, 39] to quantitatively link
migration and local stress gradients. To capture the LM
phase boundaries, we neglect time-dependent dynamics
and only consider the migration onset starting from an
initially uniform suspension. Our ansatz for γ̇(z) is that

(a) (b)

(d)(c)

FIG. 4: Cornstarch shear rheology. (a) Flow curves ηr(σ) for
φ < φm (points) with WC fits (lines). (b) Low- and high-
σ viscosities η1(φ) (circles) and η2(φ) (squares), respectively,
with η2(φ) taken from the maximum ηr(σ) from flow curves
in (a). Dotted and solid lines: ηr = [1 − φ/φ0,m]−2, with
φm determined by fitting the full set of flow curves. (c) Flow
curves for φ > φm (points) with steady (filled symbols) and
unsteady (open symbols) flow. Predicted backward-bending
flow curves (lines), each with a ‘nose’ at γ̇c(φ). (d) Onset of
fluctuations at φ = 0.48 beyond γ̇c. Open symbols in (c) rep-
resent a time-average of this unsteady data, and not included
in WC fits [32].

it is negligible within the barrel, γ̇b � Qr−3d , and transi-
tions to some finite γ̇d in the die, Fig. 5(a), in a zone of
size ∼ rd immediately upstream to the die.

During LM, there is a non-zero particle velocity rela-

tive to the mean flow, ∆u = κ(φ)a2

ηs
∂zΠ

p, with κ(φ) =
2
9φ(1 − φ)4 the permeability of the particle packing and
Πp = ηsηn(φ, γ̇)γ̇ the shear-induced particle pressure
[38–40]. The normal viscosity ηn, controlling dissipa-
tion due to compressive normal stresses, obeys ηn(φ, γ̇) =
[φJ/φ(γ̇)− 1]−2 [41, 42], and diverges at φJ(γ̇), which we
take from WC theory.

We assume that γ̇, and so Πp, are negligible in the
barrel outside a small transition zone. In this zone,
∂zΠ

p(φ, γ̇) ≈ ∆Πp/rd ≈ ηsηn(φ, γ̇d)γ̇d/rd, where γ̇d is
a typical shear rate in the die, Fig. 5(a). From previ-
ous discussion, γ̇d ∼ γ̇c(φ) = Q/αr3d. Normalizing to the
mean flow in the die 〈u〉 = Q/πr2d, we obtain a dimen-
sionless migration speed:

∆ũ(φ, γ̇d) ≡ ∆u

〈u〉 ≈
πκ(φ)a2

αr2d
ηn(φ, γ̇d). (1)

Like the shear viscosity, ηn bends backwards at γ̇c(φ),
Fig. 5(b), which manifests as a large, abrupt jump in
viscosity in rate-controlled flow. To capture this behav-
ior in fixed-Qr−3d extrusion, we impose such jumps in



4

𝟇bar>𝝓𝒊𝒏
𝒄𝒓𝒊𝒕

𝝓𝒐𝒖𝒕
𝑳𝑴

(a)

(c)

C
ha

ra
ct

er
is

tic
 

Sh
ea

r R
at

e

Axial position z

𝜟u

(b)

�̇ ⌧ Q/r3
d<latexit sha1_base64="3nJXsaeIed0yBxcw2VSzZweoNOs=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqSSABGMFC2Mr0YfUhMhxnNaq7US2g1RFXVj4FRYGEGLlH9j4G9w2A7Qc6UpH59xr33vClFGlHefbKi0tr6yuldcrG5tb2zv27l5bJZnEpIUTlshuiBRhVJCWppqRbioJ4iEjnXB4M/E7D0Qqmog7PUqJz1Ff0JhipI0U2IdelGivjzhH0GMMNk9lkHuSw2h8fx7YVafmTAEXiVuQKijQCOwv8xzOOBEaM6RUz3VS7edIaooZGVe8TJEU4SHqk56hAnGi/Hx6xRgeGyWCcSJNCQ2n6u+JHHGlRjw0nRzpgZr3JuJ/Xi/T8ZWfU5Fmmgg8+yjOGNQJnEQCIyoJ1mxkCMKSml0hHiCJsDbBVUwI7vzJi6R9VnOdmtu8qNavizjK4AAcgRPggktQB7egAVoAg0fwDF7Bm/VkvVjv1sestWQVM/vgD6zPH1vrl9I=</latexit><latexit sha1_base64="3nJXsaeIed0yBxcw2VSzZweoNOs=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqSSABGMFC2Mr0YfUhMhxnNaq7US2g1RFXVj4FRYGEGLlH9j4G9w2A7Qc6UpH59xr33vClFGlHefbKi0tr6yuldcrG5tb2zv27l5bJZnEpIUTlshuiBRhVJCWppqRbioJ4iEjnXB4M/E7D0Qqmog7PUqJz1Ff0JhipI0U2IdelGivjzhH0GMMNk9lkHuSw2h8fx7YVafmTAEXiVuQKijQCOwv8xzOOBEaM6RUz3VS7edIaooZGVe8TJEU4SHqk56hAnGi/Hx6xRgeGyWCcSJNCQ2n6u+JHHGlRjw0nRzpgZr3JuJ/Xi/T8ZWfU5Fmmgg8+yjOGNQJnEQCIyoJ1mxkCMKSml0hHiCJsDbBVUwI7vzJi6R9VnOdmtu8qNavizjK4AAcgRPggktQB7egAVoAg0fwDF7Bm/VkvVjv1sestWQVM/vgD6zPH1vrl9I=</latexit><latexit sha1_base64="3nJXsaeIed0yBxcw2VSzZweoNOs=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqSSABGMFC2Mr0YfUhMhxnNaq7US2g1RFXVj4FRYGEGLlH9j4G9w2A7Qc6UpH59xr33vClFGlHefbKi0tr6yuldcrG5tb2zv27l5bJZnEpIUTlshuiBRhVJCWppqRbioJ4iEjnXB4M/E7D0Qqmog7PUqJz1Ff0JhipI0U2IdelGivjzhH0GMMNk9lkHuSw2h8fx7YVafmTAEXiVuQKijQCOwv8xzOOBEaM6RUz3VS7edIaooZGVe8TJEU4SHqk56hAnGi/Hx6xRgeGyWCcSJNCQ2n6u+JHHGlRjw0nRzpgZr3JuJ/Xi/T8ZWfU5Fmmgg8+yjOGNQJnEQCIyoJ1mxkCMKSml0hHiCJsDbBVUwI7vzJi6R9VnOdmtu8qNavizjK4AAcgRPggktQB7egAVoAg0fwDF7Bm/VkvVjv1sestWQVM/vgD6zPH1vrl9I=</latexit><latexit sha1_base64="3nJXsaeIed0yBxcw2VSzZweoNOs=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqSSABGMFC2Mr0YfUhMhxnNaq7US2g1RFXVj4FRYGEGLlH9j4G9w2A7Qc6UpH59xr33vClFGlHefbKi0tr6yuldcrG5tb2zv27l5bJZnEpIUTlshuiBRhVJCWppqRbioJ4iEjnXB4M/E7D0Qqmog7PUqJz1Ff0JhipI0U2IdelGivjzhH0GMMNk9lkHuSw2h8fx7YVafmTAEXiVuQKijQCOwv8xzOOBEaM6RUz3VS7edIaooZGVe8TJEU4SHqk56hAnGi/Hx6xRgeGyWCcSJNCQ2n6u+JHHGlRjw0nRzpgZr3JuJ/Xi/T8ZWfU5Fmmgg8+yjOGNQJnEQCIyoJ1mxkCMKSml0hHiCJsDbBVUwI7vzJi6R9VnOdmtu8qNavizjK4AAcgRPggktQB7egAVoAg0fwDF7Bm/VkvVjv1sestWQVM/vgD6zPH1vrl9I=</latexit>

⇠ rd
<latexit sha1_base64="GRPagTMs65V7pLXfmCXAmbxGt9E=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ac0sWw2m3bp7ibsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8y8MOVMG9f9dkpr6xubW+Xtys7u3v5B9fCoo5NMEdomCU9UL8SaciZp2zDDaS9VFIuQ0244vpn53UeqNEvkvZmkNBB4KFnMCDZWevA1E0gNcl8JFE0H1Zpbd+dAq8QrSA0KtAbVLz9KSCaoNIRjrfuem5ogx8owwum04meappiM8ZD2LZVYUB3k86un6MwqEYoTZUsaNFd/T+RYaD0Roe0U2Iz0sjcT//P6mYmvgpzJNDNUksWiOOPIJGgWAYqYosTwiSWYKGZvRWSEFSbGBlWxIXjLL6+SzkXdc+ve3WWteV3EUYYTOIVz8KABTbiFFrSBgIJneIU358l5cd6dj0VrySlmjuEPnM8fPFKSUw==</latexit><latexit sha1_base64="GRPagTMs65V7pLXfmCXAmbxGt9E=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ac0sWw2m3bp7ibsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8y8MOVMG9f9dkpr6xubW+Xtys7u3v5B9fCoo5NMEdomCU9UL8SaciZp2zDDaS9VFIuQ0244vpn53UeqNEvkvZmkNBB4KFnMCDZWevA1E0gNcl8JFE0H1Zpbd+dAq8QrSA0KtAbVLz9KSCaoNIRjrfuem5ogx8owwum04meappiM8ZD2LZVYUB3k86un6MwqEYoTZUsaNFd/T+RYaD0Roe0U2Iz0sjcT//P6mYmvgpzJNDNUksWiOOPIJGgWAYqYosTwiSWYKGZvRWSEFSbGBlWxIXjLL6+SzkXdc+ve3WWteV3EUYYTOIVz8KABTbiFFrSBgIJneIU358l5cd6dj0VrySlmjuEPnM8fPFKSUw==</latexit><latexit sha1_base64="GRPagTMs65V7pLXfmCXAmbxGt9E=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ac0sWw2m3bp7ibsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8y8MOVMG9f9dkpr6xubW+Xtys7u3v5B9fCoo5NMEdomCU9UL8SaciZp2zDDaS9VFIuQ0244vpn53UeqNEvkvZmkNBB4KFnMCDZWevA1E0gNcl8JFE0H1Zpbd+dAq8QrSA0KtAbVLz9KSCaoNIRjrfuem5ogx8owwum04meappiM8ZD2LZVYUB3k86un6MwqEYoTZUsaNFd/T+RYaD0Roe0U2Iz0sjcT//P6mYmvgpzJNDNUksWiOOPIJGgWAYqYosTwiSWYKGZvRWSEFSbGBlWxIXjLL6+SzkXdc+ve3WWteV3EUYYTOIVz8KABTbiFFrSBgIJneIU358l5cd6dj0VrySlmjuEPnM8fPFKSUw==</latexit><latexit sha1_base64="GRPagTMs65V7pLXfmCXAmbxGt9E=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ac0sWw2m3bp7ibsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8y8MOVMG9f9dkpr6xubW+Xtys7u3v5B9fCoo5NMEdomCU9UL8SaciZp2zDDaS9VFIuQ0244vpn53UeqNEvkvZmkNBB4KFnMCDZWevA1E0gNcl8JFE0H1Zpbd+dAq8QrSA0KtAbVLz9KSCaoNIRjrfuem5ogx8owwum04meappiM8ZD2LZVYUB3k86un6MwqEYoTZUsaNFd/T+RYaD0Roe0U2Iz0sjcT//P6mYmvgpzJNDNUksWiOOPIJGgWAYqYosTwiSWYKGZvRWSEFSbGBlWxIXjLL6+SzkXdc+ve3WWteV3EUYYTOIVz8KABTbiFFrSBgIJneIU358l5cd6dj0VrySlmjuEPnM8fPFKSUw==</latexit>

�̇ = Q/↵r3
d<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FIG. 5: A 1-D model for LM. (a) Schematic of the ‘dilation
zone’ above the die. The resulting stress gradient causes a ve-
locity difference ∆u = up−〈u〉 between the particles and mean
flow. (b) Normal viscosity ηn(γ̇) computed using WC fit pa-
rameters. Dotted lines: full backwards bending or ‘S’ shaped
flow curves. Solid lines: profiles used to compute ∆ũ with im-
posed jumps in the unsteady regime. (c) ∆ũ(φ,Q/r3d), com-
puted using α = 4.8 and rd/a = 140. Red dashed line: φm.
The contour ∆ũ(φ,Q/r3d) = ε† = 0.004 gives the SBM+WC
phase boundary in Fig. 3 for rd/a = 140.

ηn for γ̇d ≥ γ̇c(φ) when evaluating ∆ũ(γ̇, φ), Fig. 5(b),
and similar jumps in the ‘S’-shaped discontinuous shear
thickening flow curves [5, 43, 44].

Figure 5(c) shows ∆ũ(φ,Q/r3d) for α = 4.8. Although
there is finite migration, ∆ũ > 0, for all φ and Q/r3d, the
jump from negligible [∆ũ ∼ O(10−5), blue] to strong mi-
gration [∆ũ ∼ O(10−1), yellow] is very sharp for φ ≥ φm,
and is associated with the equally abrupt jump in ηn
when γ̇d → γ̇c(φ) = Q/αr3d, i.e., at precisely the LM
boundary. Formally, if we define the transition from neg-
ligible to significant migration to occur at some thresh-
old, i.e. when ∆ũ(φc, γ̇d) ≥ ε†, we recover the observed
phase boundary above φm for any 10−5 . ε† . 10−2

independent of rd for rd/a ≥ 70.
Below φm, the WC flow curves approach a limiting

high-stress viscosity, so there is no longer a maximum
possible shear rate γ̇c. Now, the transition from low to
high ∆ũ is far less abrupt, Fig. 5(c) (below red dashed
line), and where it can be deemed to occur depends on
our choice of the threshold, ε†, and also on rd/a.

To choose ε†, we note that the dilation accompany-
ing particle migration is roughly equivalent to ∆u con-
tributing an extra volume ∆V ∝ ∆uτdr

2
d to material

in the transition zone above the die, where particles re-
side for τd ≈ rd/〈u〉. Thus, |∆φ/φ| ≈ ∆V/Qτd ∼
∆u/〈u〉 ≡ ∆ũ. Experiments on suspensions of larger
particles (a & 50 µm) below φm [18] detected LM for

|∆φ/φ| ≈ 4 × 10−3, which we take to be our ε†. We
plot the LM boundary using ε† = 0.004 for two die radii,
rd/a = 70 and 140, in Fig. 3. The fit to data below φm
is credible, but poorer than for φ > φm. Using smaller ε†

produces better fits, but is hard to motivate physically.
Whatever the choice of ε† and rd/a, our model captures
the abrupt change in slope of the LM boundary at φm.

Summarizing, we have characterized LM during ex-
trusion of shear-thickening cornstarch suspensions. The
onset concentration at low to moderate flow rates lies
on a universal boundary if data for different flow rates
and die radii are plotted against Qr−3d , an estimate of
the maximum shear rate in the die. The locus where
Qr−3d → αγ̇c(φ) fits well the observed LM boundary
above φm with α ≈ 4.8, suggesting that flow in a finite
region near the die entrance must be unstable for appre-
ciable LM. The instability point γ̇c(φ) can be estimated
by where ηr dramatically increases in controlled-stress
rheology, Fig. 4(c). We therefore have a theory for LM
at φ ≥ φm up to a single dimensionless parameter inde-
pendent of any other theoretical model. It is also possible
to obtain γ̇c(φ) by fitting bulk rheology data to WC the-
ory. Coupling this to the SBM for particle migration in
a simple 1D model gives a semi-quantitative prediction
of the boundary below φm. A more sophisticated theory
of LM accounting for radial migration [36, 45–47] and
extensional flow [48, 49] may obviate the need for α and
produce better agreement at φ < φm.

Previously, LM had been modeled using finite-time-
step methods to simulate extrusion, and either a 1-D
[50, 51] or 2-D finite-element model [52, 53] to describe
the paste. These empirical paste models rely on material
parameters not directly extractable from shear rheology.
Particle-based simulations of extrusion, which lack an ex-
plicit fluid phase, reproduce localized shear and stress
gradients near the die entry but not LM, highlighting the
importance of such gradient-driven flows [37]. A model
for LM in suspensions of larger granular particles based
on suspension balance exists [18], but requires measured
particle pressures as input. Our model uses bulk rheology
data to capture LM.

While we find increasing LM with increasing (low
to moderate) flow rate in shear thickening suspensions,
LM increases with decreasing flow rates in many other
pastes [11, 13, 14, 16], possibly because attractive or ad-
hesive interaction between particles gives rise to yield-
stress and shear-thinning behavior. A recently-proposed
constraints-based extension of the WC model to include
such interactions [54] may allow application of our ap-
proach here to a broader range of pastes.
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