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We show that the dynamics of (vertical) Franck-Condon excitations in the regime where Holstein-
coupled vibrational modes mix strongly with electronic degrees of freedom sharply contrasts with
the known self-localized behavior of vibrationally-relaxed excitations. Instead, the strongly-coupled
modes are found to periodically induce resonances between interacting electronic sites, during which
effective excitation transfer occurs, allowing Franck-Condon excitations to attain substantial mean
square displacements under conditions where relaxed excitations are essentially trapped to a single
site. In demonstrating this behavior, we employ a multi-set matrix product state formalism. We
find this tensor network state method to be a remarkably efficient and accurate approach for the
notoriously difficult problem posed by the Holstein model in the regime where the electronic coupling,
the vibrational quantum, and the vibrational reorganization energy are comparable in magnitude.

Introduction.—Holstein-type vibronic coupling, the
coupling of local vibrations to the transition energies of
electrons, holes, and excitons, is at the core of myriad im-
portant dynamical phenomena in the physical sciences.
In addition to its importance in many inorganic systems,
of particular current interest is its manifestation in or-
ganic molecular materials [1], with implications for pho-
tosynthetic energy transfer [2–4] and singlet exciton fis-
sion [5–9], among many other applications. At the same
time, the Holstein model continues to pose a consider-
able challenge for theory, encompassing a rich parameter
space involving energy scales that include the electronic
interaction strength (J), the vibrational energy (ω0), the
vibrational reorganization energy (g2ω0), and the tem-
perature. While certain limits of this space are amenable
to perturbative approaches [10–14], no (semi)analytical
treatment is available in the regime where J , ω0, and
g2ω0 are comparable. This regime, where strong mixing
between vibrational and electronic coordinates occurs, is
representative of many organic materials, and has been
the target of various numerically-exact techniques that
have emerged over the recent years. Such techniques are
based on either an elimination of vibrational coordinates
(by means of a system-bath decomposition) [15–18] or
an explicit but truncated representation of the entire vi-
bronic system [19, 20]. However, both approaches rapidly
become prohibitively expensive with increasing number
of electronic and vibrational degrees of freedom. This
scaling issue drastically worsens with increasing vibra-
tional reorganization energies, as system-bath decompo-
sitions become difficult to converge and explicit descrip-
tions demand the inclusion of an ever increasing set of
bosonic states representing the vibrational coordinates.
As a result of this lack of viable methodologies, much
remains to be learned about how charges and excitons
dynamically interact with strongly-coupled vibrations.

In this Letter, we employ the remarkable computa-
tional benefits offered by tensor network states to ex-
plore the nonequilibrium excitation dynamics resulting

from the single-mode Holstein model in its electronic
single-particle sector, covering the full range of the vi-
bronic coupling strength, g, and including the strong-
mixing regime. We pay special attention to initial con-
ditions corresponding to different local excitations of the
uncoupled Hamiltonian. For initial excitations that are
vibrationally relaxed in the (shifted) excited state vibra-
tional potential, we find the mobility to decline with in-
creasing g, as expected for Holstein polarons. However,
for Franck-Condon (sudden) excitations, we find the g-
dependence to be markedly weakened for a surprisingly
long time period after initialization. Concomitantly, we
find the quasi-ballistic transport found in the weak cou-
pling limit to be replaced by a pulsed transfer mechanism.
An analysis of transient vibrational overlap factors shows
that this mechanism is driven by a vibrational oscilla-
tion of the Franck-Condon excitation, which protects the
excited state from self-localizing while allowing periodic
resonances during which effective excitation transfer oc-
curs. This mechanism allows the excitation to attain a
substantial root mean square displacement (RMSD) in
coupling regimes where vibrationally-relaxed excitations
are essentially immobile.

Tensor network states, in particular in their matrix
product state (MPS) form, have gradually attained pop-
ularity as an efficient and accurate framework for describ-
ing large interacting quantum systems [21, 22]. Ground
states of gapped one-dimensional systems are known to
be efficiently representable by MPSs [23, 24]. Similarly,
MPSs have gained considerable traction in the applica-
tion to nonequilibrium dynamics, although considerable
challenges remain due to the exponential scaling of their
computational cost with time for general, ergodic systems
[25]. Furthermore, while ample applications can be found
in strongly-correlated many-body physics, MPSs have
remained relatively underrepresented in single-particle
electronic problems and in particular those concerning
the single-mode Holstein model, even though examples
targeting the ground state of its Hamiltonian have ap-
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peared as early as two decades ago [26]. Exceptions can
be found for zero-dimensional models with few electronic
states coupled to a potentially large number of modes,
the dynamics of which have been treated by related ten-
sor network state techniques since the 1990s [27–30]. The
last few years have seen the appearance of a few notable
works showing promising results for MPS-based calcu-
lations of the Holstein model [31–33], yet the utility of
tensor network states to this class of problems has re-
mained largely unexplored. In this Letter, by demon-
strating that MPSs allow access to unprecedented time
and length scales for the single-particle Holstein model
in the strong-mixing regime, we showcase their potential
for studying a host of polaronic phenomena.

Theory.—For a lattice consisting of N sites, the Hol-
stein Hamiltonian in its electronic single-particle sector
can be expressed in terms of J , g, and ω0 as

Ĥ = ω0

N∑
α=1

b̂†αb̂α+gω0

N∑
α=1

(b̂†α+ b̂α) |α〉〈α|+J
N∑

<α,β>

|α〉〈β| ,

(1)

where b̂
(†)
α is the annihilation (creation) operator for a lo-

cal mode coupled to an electronic excitation |α〉 = ĉ†α |0〉
at site α, with ĉ†α as the electronic creation operator and
|0〉 as the electronic vacuum. The last summation is lim-
ited to nearest-neighboring sites, α and β. Note that this
Hamiltonian includes local coupling of each electronic site
to a single, dispersionless Einstein oscillator. More gen-
eral coupling schemes would pose no difficulty for the
applied methodology, but are beyond the scope of the
present study.

Tensor network states employ the principle that the
wavefunction coefficients of a state in a Hilbert space for
N sites can be thought of as a tensor of order N . Decom-
posing this tensor into a product of smaller tensors, and
truncating these tensor products, replaces the exponen-
tial scaling with N by a low polynomial (usually linear)
scaling. In case of MPSs, such a decomposition takes the
form

|Ψ〉 =
∑
{σi}

Aσ1
1 Aσ2

2 . . . AσN

N |σ1σ2 . . . σN 〉 , (2)

where the indices σi label the physical basis states, and
the A-tensors satisfy Aσi

i ∈ Cχi−1×χi . Here, the “bond
dimension” χi controls the truncation applied to the in-
ternal (virtual) indices. The degree of entanglement be-
tween bipartitions of the system that can be accounted
for by a tensor network is determined by its bond di-
mensions as well as its connectivity. Nonequilibrium dy-
namics generally leads to a (stretched) exponential in-
crease of the bond dimension necessary to describe the
state accurately with time, with the exception of local-
ized systems [34, 35]. Thus, it is crucial to select a tensor
network ansatz that captures the entanglement build-up
efficiently in order to simulate physically-relevant time
scales.

For the Holstein model, an obvious choice for the
tensor network ansatz is to consider the Hamiltonian
as a chain of spinless noninteracting fermions, each of
which is coupled to its respective vibrational mode. Af-
ter performing a Jordan-Wigner transformation on the
fermions, this problem can straightforwardly be treated
as an MPS. However, the reachable timescale under this
ansatz is limited due to the relatively fast growth of en-
tanglement entropy. An alternative approach considers
the single-particle Holstein model as an N -level impurity,
the levels of which correspond to the electronic single-
particle states, where each level is coupled to its respec-
tive mode. Within the realm of MPSs, this impurity
model is treated as an effectively one-dimensional prob-
lem. However, the resulting connectivity introduces long-
range interactions between the vibrational coordinates
and the impurity site, again leading to a rapid growth of
entanglement.

Our tensor network ansatz is closely related to the N -
level impurity approach, but instead of solving the entire
system as a single MPS, we express its wavefunction in
terms of a set of products of electronic states and associ-
ated vibrational wavefunctions,

|Ψ〉 =

N∑
α=1

|Ψα〉 |α〉 . (3)

The vibrational wavefunctions, |Ψα〉, are then each ex-
panded independently as an MPS with a bond dimen-
sion χ′, analogous to Eq. 2, the norm of which corre-
sponds to the electronic population at site α. The indices
σi label the vibrational states using the bosonic occupa-
tion number basis associated with the (unshifted) ground
state harmonic potential, which are truncated beyond a
maximum number of quanta, νmax. Note that such a
multi-set approach was first introduced [36, 37] for multi-
configuration time-dependent Hartree methods [38, 39],
a related tensor network state technique, and was very
recently employed in an MPS setting close in spirit to
the one applied here [33]. Our multi-set MPS at a given
bond dimension χ′ can be converted to a standard MPS
for the Jordan-Wigner transformed Holstein model men-
tioned above. The resulting bond dimension χ is tightly
lower-bounded by χ′ and loosely upper-bounded by Nχ′.
As such, the favorable bond dimension of the multi-set
MPS renders it a promising tensor network for obtaining
both ground states and nonequilibrium time evolution,
the latter being explored in this Letter. Despite intro-
ducing a quadratic scaling with the system size, we find
the multi-set MPS approach to achieve remarkably long
length and time scales.

To obtain the time evolution of |Ψ〉, we use the time-
dependent variational principle [40, 41], which allows the
(time-local) optimal approximate solution of the time-
dependent Schrödinger equation to be computed, given
a variational ansatz (such as the multi-set MPS as em-
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ployed in this work) [42, 43]. It amounts to solving the
projected Schrödinger equation,

i ˙|Ψ〉 = P̂M[|Ψ〉]Ĥ |Ψ〉 , (4)

where P̂M[|Ψ〉] is the projector onto the tangent space
of the variational manifold M attached to |Ψ〉 ∈ M
[44, 45]. The resulting dynamics is numerically exact
up to times for which the variational ansatz fails to cap-
ture the produced entanglement accurately, and can be
systematically converged to longer times by increasing
the bond dimension. All presented data is obtained with
a timestep of dt = 0.1 and is tightly (< 1% deviation
in the RMSD) converged with respect to boundary ef-
fects as well as all numerical parameters (see Table I and
Ref. 45). Applying less stringent convergence criteria is
tempting; however, there is numerical evidence that loose
convergence of asymptotic properties can yield qualita-
tively incorrect results [46].

1D 2D
g 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.5 2.0

νmax 8 16 16 64 64 64 128 128 8 64

χ′ 16 16 16 16 32 32 32 32 16 32

N 301 75 75 51 25 25 25 25 15 × 15 11 × 11

dt 0.1 0.1

Table I. Numerical parameters for the different applied cou-
pling strengths, g, in one and two spatial dimensions: local
bosonic Hilbert space dimension, νmax, bond dimension, χ′,
number of lattice sites, N , and timestep, dt.

Not being limited to ground state or band-edge ex-
cited states, we are free to differentiate between the fol-
lowing two vibrational initial conditions for a local (in
real space) electronic excitation. The first condition is
that of an excitation vibrationally relaxed in the (elec-
tronically) excited state potential (referred to as “re-
laxed”), whereas the second corresponds to an excita-
tion created upon a vertical transition starting from the
zero-vibrational (electronic) ground state level (known
as a Franck-Condon excitation). These two cases can
be regarded as the two extremes spanning the scope of
commonly used nonequilibrium initial conditions. The
Franck-Condon excitation is representative of an impul-
sive optical excitation of a vibronic system involving a
vibration whose energy is large compared to the thermal
quantum, which is satisfied by most functionally-relevant
Holstein modes studied in the literature. The relaxed ex-
citation, on the other hand, is a pragmatic initial condi-
tion for models involving a “shifted” basis for describing
(electronically) excited state vibrations [47], and can be
regarded as a proxy for optical pumping into the lowest-
energy vibronic (0 − 0) transition. For the dynamics of
electronic excitations localized in momentum space, we
refer the reader to Ref. 48.

Results.—In Fig. 1 we present excitation dynamics for
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Figure 1. Excitation density ρ as a function of time (verti-
cal) and site (horizontal) for Franck-Condon (upper panels)
and relaxed (lower panels) excitations. Red curves show the
excitation density profile at t/2π = 6.

a linear chain with open boundaries, following an ini-
tial excitation located at the chain center, under the
two aforementioned vibrational preparations. Shown as
heatmaps are the calculated chain populations as a func-
tion of time (in units of inverse energy, with ~ = 1) re-
sulting from the Holstein model with ω0 = J = 1 and for
varying values of g. The dynamics for g = 0.5 is near-
identical for both initial vibrational conditions, which
is consistent with the notion that these conditions be-
come equivalent in the limit of g → 0, and is dominated
by a ballistic component characteristic of a vibronically-
uncoupled excitation. The excitation mobility can be
seen to decrease with increasing g, indicative of the for-
mation of a polaron with increasing effective mass, in-
cluding a rapid decline of the mobility of a relaxed ex-
citation in the regime of strong coupling, as a result of
self-localization. However, in marked contrast to the re-
laxed excitation, the Franck-Condon excitation is seen to
retain a substantial mobility even under strong coupling.
This trend is shown more systematically in Fig. 2, which
depicts the transient RMSD for values of g ranging from
0 to 4. For g = 2.5, the Franck-Condon excitation spread
rapidly reaches ∼6 sites, whereas the relaxed excitation
remains essentially stalled on a single site.

An alternative means of demonstrating the contrast-
ing dynamics emerging from relaxed and Franck-Condon
excitations is by plotting the RMSD at a fixed time for
varying g. This is shown in Fig. 3 for t/2π = 6. Here,
the delocalization of the relaxed excitation shows a pro-
nounced drop with g exceeding unity, which is almost
entirely absent for the Franck-Condon excitation. Inter-
estingly, within this coupling range we see the emergence
of a beating pattern for the Franck-Condon excitation dy-
namics in Fig. 2, with 2π-periodic enhancements in the
RMSD becoming more abrupt with increasing g. This
indicates that their dynamics stems from a mechanism
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Figure 2. Upper panels: RMSD against time for Franck-
Condon (solid lines) and relaxed (dashed lines) excitations.
The inset shows a schematic of the vibrationally-induced
transfer mechanism for Franck-Condon excitations. Data
for g = 1.5 is reproduced in both panels for comparison.
Lower panel: Overlap F0 between the vibrational wavepacket
in the electronically excited potential and that of the zero-
vibrational state in the ground state potential for the central
site.

that is radically different from that of relaxed excita-
tions in the strong coupling limit. In order to under-
stand the nature of this mechanism it is insightful to
consider the transient overlap of the vibrational wave-
function inside the electronically excited potential with
that of the zero-vibrational state in the ground state po-
tential. Shown together with the RMSDs in Fig. 2, this
overlap exhibits a beating pattern roughly in sync with
that seen for excitation transport, such that regions of
large vibrational overlap coincide with abrupt enhance-
ments in the RMSD.

The physical picture of the dynamics of strongly-
coupled Franck-Condon excitations emerging from our
results is shown schematically in the inset of Fig. 2. Upon
initial excitation, the vibrational wavepacket oscillates
in and out of the Franck-Condon region, as indicated
by the beatings apparent in the calculated vibrational
overlap. When inside this region, excitation transfer to
neighboring sites is effective due to a resonance between
the (inverted) Franck-Condon transition at the donor site
and that at the neighboring site. Moving out of this re-
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Figure 3. RMSD at time t/2π = 6 as a function of the
vibronic coupling strength for Franck-Condon (black crosses)
and relaxed (red dots) excitations.
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Figure 4. Excitation density ρ for two-dimensional lattices at
weak (g = 0.5, 15 × 15 sites, left panel) and strong coupling
(g = 2.0, 11 × 11 sites, right panel). Upper (lower) panels
show Franck-Condon (relaxed) excations. Log scale is used
for clarity.

gion, however, the transition energy at the donor site
will rapidly decrease, leaving the vibrationally-relaxed
neighboring site without an energy-matching transition
with significant vibrational overlap. Importantly, the
sustained motion of the strongly-coupled vibration pro-
tects the electronic excitation from self-localizing while
periodic resonant transfers occur.

Next, we briefly discuss the manifestation of the dy-
namics in two dimensions. Higher-dimensional ten-
sor network structures are computationally demanding,
while mapping higher-dimensional problems to a one-
dimensional tensor network induces long-range connec-
tivity, resulting in complicated entanglement structures.
This renders the application of tensor network states in
two dimensions and above a challenging endeavor, par-
ticularly so for dynamical problems involving strongly-
correlated electronic systems for which the time scales
reached in state-of-the-art calculations have been lim-
ited [49]. Interestingly, for the two-dimensional Hol-
stein model mapped to a chain in a row-by-row man-
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ner (from left to right and from bottom to top), again
with ω0 = J = 1, we are able to reach time scales
(t ∼ π/J) comparable to earlier efforts with modest com-
putational resources. Although a detailed investigation
of the performance of our method in higher dimensions
is beyond the scope of the present Letter, we speculate
that the principle that entanglement is introduced indi-
rectly (by coupling between different sets) aids in obtain-
ing a favorable computational performance even in two
dimensions. In Fig. 4, we show the excitation densities
for select reorganization energies and excitation condi-
tions, given a square lattice with open boundary condi-
tions and an excitation initiated at the center. For weak
coupling, both the relaxed and Franck-Condon excita-
tion are equally spread-out, exhibiting a well-resolved
two-dimensional interference pattern. Consistent with
the one-dimensional case, with increasing g we find the
spread of the Franck-Condon excitation to be signifi-
cantly more pronounced than that of the relaxed exci-
tation.

Conclusions.—We have shown that mixing of elec-
tronic coordinates with strongly-coupled vibrational
modes results in Franck-Condon excitations whose ini-
tial dynamics is markedly different from that known for
vibrationally-relaxed excitations. Sustained vibrational
motion is found to generate periodic resonances between
neighboring electronic sites, during which effective energy
transfer occurs, allowing a Franck-Condon excitation to
spread over substantial distances in parameter regimes
where relaxed excitations are essentially self-trapped on
a single site. Of course, over much longer time scales one
expects that this mechanism no longer governs the dy-
namics, and behavior akin to that of the relaxed initial
condition takes over. In addition to providing funda-
mental insights into strongly-coupled vibronic systems,
these results have implications for the nonequilibrium
behavior of materials upon vertical transitions from a
vibrationally-relaxed (ground state) initial condition, in
particular when the functionally-relevant dimensions of
the material are in the range of the mean square displace-
ments found in our calculations. In many practical cases
excitation conditions are near-vertical, resulting from im-
pulsive perturbations of the electronic degrees of freedom,
and our findings reveal that the subsequent ultra-fast dy-
namics can not be understood based on vibrationally-
relaxed steady-state principles. In unraveling this re-
markable photophysical behavior, we have accessed a no-
toriously difficult region of the single-particle Holstein
model, employing the computational benefits offered by
a multi-set matrix product state approach. As such, this
work highlights the potential of this tensor network state
method in addressing problems involving charged and ex-
citonic polarons. The flexibility of this approach also al-
lows to make progress in more complex situations, such as
long-range electronic hopping or higher dimensionality,
for which encouraging results have been presented in this

work. Lastly, given that ground states of gapped, one-
dimensional systems follow the area law of entanglement
entropy, we expect this approach to also perform well for
finding ground and low-lying excited states within the
one-dimensional single-particle Holstein model.
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