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We study photon emission by an ensemble of two-level systems, with strong inhomogeneous broadening and
coupled to a cavity mode whose frequency has linear time-dependence. The analysis shows that, regardless the
distribution of energy level splittings, a sharp phase transition occurs between the weak and strong cooperative
emission phases near a critical photonic frequency sweeping rate. The associated scaling exponent is deter-
mined. We suggest that this phase transition can be observed in an ensemble of negatively charged NV− centers
in diamond interacting with a microwave half-wavelength cavity mode even in the regime of weak coupling and
at strong disorder of two-level splittings.

For a system driven by time-dependent fields, one can de-
fine the limits of fast and slow (adiabatic) field modulation.
In the former limit, the system does not have time to respond.
In the latter one, the system adjusts to be in an instantaneous
eigenstate of the Hamiltonian. An intermediate regime, how-
ever, is usually poorly understood, so it holds potential to
identify novel and robust effects allowing for new function-
alities of solid-state microstructures.

In this letter, we examine a quantum many-body model
whose behavior depends discontinuously on a parameter de-
scribing the rate of time-dependent control. Depending on this
parameter, the system behaves as driven either very quickly or
almost adiabatically. The transition between these phases is
marked by a critical modulation rate such that an order pa-
rameter can be defined that is zero in one phase and grows
following a power law in the other phase. Thus, we demon-
strate that the limiting dynamic characteristics such as “fast”
and “slow” can be attributed to different phases divided by
a sharp boundary belonging to the intermediate modulation
regime.

Specifically, we consider a generalized Tavis-Cummings
(TC) Hamiltonian:

Ĥ = ωâ†â+

N∑
k=1

εkσ̂
z
k +

N∑
k=1

gk(â†σ̂−k + âσ̂+
k ), (1)

where ω is the frequency of a bosonic mode â; σ̂k are the
Pauli operators of k-th out of N spin; εk and gk are the spin
level splitting energy and the coupling constant to the bosonic
mode, respectively. This model is notorious for predicting a
variety of quantum cooperative effects in an ensemble of two-
level quantum emitters coupled to a photonic cavity mode [1].
However, for solid-state quantum emitters, local strains and
dipole fields randomize energy level splitting εk leading to
the inhomogeneous broadening. This results in the coherence
loss disrupting the cooperative effects at weak coupling, i.e.,
when

√
var(εk)� 〈gk〉

√
N [2].

To address this problem, we set the cavity mode frequency
to vary in time linearly around the mean, 〈εk〉, of the two-level
splitting with a rate β > 0:

ω(t) = 〈εk〉 − βt, (2)

FIG. 1. The adiabatic energy levels of the Hamiltonian (1) in the
sector with five up-polarized spins (25 = 32 states in the phase
space) and zero bosons in the initial state; ω = −βt. The red dotted
curve marks the ground energy level for this sector. Here β = 1,
gk = 0.25, ∀k and εk = 0.8 · (k−N/2+ rk), where rk are random
numbers from the range of (0, 0.5).

and require that as the t increases from a large negative, −T ,
to a large positive, T , values, the photon frequency passes
through all spin resonances, i.e., | ± βT | >

√
var(εk). Note-

worthy that similar protocols are used for binding ultracold
atoms into molecules [3, 4].

For the slow modulation limit, β → 0, the adiabatic theo-
rem guarantees that the system remains in the ground state if
its energy is separated by a gap from the rest of the spectrum.
The Hamiltonian (1) conserves the number of excitations rep-
resented by the up-spins plus bosons. Thus for N excitations,
the initially fully up-polarized spin state is the ground state.
In Fig. 1 we show that this state changes so that its energy
is always separated by a gap from other levels. Hence, we
can exclude the scaling arguments of the Kibble-Zurek theory
[5–7], and nonadiabatic excitations become suppressed expo-
nentially for sufficiently small β. After the slow linear sweep
of the frequency (2), all spin excitations are transferred to the
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FIG. 2. Comparison of the normalized average number of photons
nph ≡ Nph/N with Nph ≡ 〈â†â〉 emitted by N = 8 initially up-
polarized spins with the Hamiltonian (1) after a sudden quench (blue
curve) that places ω = 〈εk〉 at t = −200 and keeps ω constant
afterwards; and during a linear sweep of the frequency (black curve)
according to Eq. (2) with β = 0.03. Here, εk and gk are random
Gaussian numbers with 〈εk〉 = 0,

√
var(εk) = 1, 〈gk〉 = 0.1,

and
√

var(gk) = 0.02. Both curves are averaged over 10 different
realizations of random parameters.

photons that become far off-resonance at the end.
However, the adiabatic limit is usually hard to achieve. As

a practical system, we consider negatively charged NV− cen-
ters in diamond coupled to a half-wavelength size microwave
cavity mode. Then the basic parameters are 〈εk〉 ∼ 3GHz,√

var(εk) ≈ 3MHz, gk ∼ 10Hz [8]. We intentionally do
not consider a system with artificially reduced disorder or in-
creased coupling. The initial spin polarization can be induced
optically. For example, there is a maser based on NV− cen-
ters at room temperature [11]. It was also shown in [12] that if
the cavity mode is far off-resonance at cryogenic temperature,
the spin lifetime T1 increases to many hours. Spin coherence
time T2 for well isolated NV-centers reaches milliseconds at
room temperature [9], and such a quantum lifetime is found
generally at liquid nitrogen temperatures [10]. Moreover, it
is possible to sweep frequency of a cavity within 1GHz fre-
quency range using the piezoelectric effect [13]. Thus, our
assumptions about the Hamiltonian (1), the initial conditions,
and the protocol (2) can be experimentally realized.

The condition for the adiabatic limit is 〈g2k〉/β � 1, which
requires the passage through the inhomogeneously broadened
region during time 2T ≈ 2

√
var(εk)/β ∼ 105sec. This

should be compared with the lifetime of a photon in the cavity
τc = Q/〈εk〉. The quality factor Q is usually not exceeding
values above Q ∼ 106 [14], for which τc ≈ 10−4sec. At ex-
tra costs, it is possible to reach Q ∼ 109 [15] but this is still
far from what is needed to reach the adiabatic regime without
photon losses.

Nevertheless, consider Fig. 2 that shows results of our nu-
merical simulations for N = 8 spins and parameters that
mimic strong disorder [16]. It demonstrates, that even if the

strict adiabatic regime is not reached, the linear sweep of the
frequency still produces much more photons than a sudden
(Heaviside θ-function) shift of the cavity mode frequency to
the center of the resonance. Such a strong photon emission in-
duced by a linearly time-dependent field is similar to the one
in the model without any inhomogeneous broadening [17].
Hence, strong static disorder may not be a problem for stimu-
lated emission by a protocol (2).

Here, we suggest that NV− centers inside a half-
wavelength cavity can be used to store energy in spin exci-
tations and release it on demand locally as a pulse of coherent
radiation after a linear nonadiabatic frequency chirp (2). We
are going to show that if the photon loss rate is reasonably
weak and N is reasonably large, then the linear frequency
chirp leads to collective radiation emission, with optical pa-
rameters being close to the perfect collective emission by all
spins at no static disorder. This process, however, requires
specific tuning of the sweeping rate β because too fast changes
are ignored by spins, whereas collective effects at slow sweeps
are affected by photon losses. Our theory will thus identify the
condition for observation of this collective radiation effect.

Our approach is based on the recently found solution of the
model (1) with a time-dependent frequency (2) and constant
couplings: gk = g, ∀k [19–22]. The latter assumption is not
essential because the main disorder problems originate from
the distribution of εk, which keeps most of the two-level sys-
tems to be off-resonance at any given frequency of the cavity
field. In [20], two of us derived the state-to-state transition
probabilities for the sweep from large negative to large pos-
itive values, and derived the large-N limit of this solution.
However, further analysis was based on testing several pre-
dictions that were derived for εk = 0, ∀ k in the large-N limit
by approximate methods [17]. The latter work identified three
regimes: with low and high emission of bosons, and an in-
termediate regime that could not be studied by well-justified
methods.

The exact solution, however, becomes particularly valuable
when approximate methods of [17] do not apply, i.e., at strong
inhomogeneous broadening and moderate frequency sweep-
ing rates. Let us now focus precisely on this poorly under-
stood regime, where the model’s solution will reveal a critical
phenomenon. According to [20], if an ensemble of N spins is
initially polarized “up” and the optical mode is initially empty,
then the probability of emitting n photons after the linear chirp
(2) is given by the distribution:

Pn = xN−n(xN−n, x)n, x ≡ e−2πg
2/β , (3)

where (a, x)k ≡
∏k−1
j=0 (1 − axj) is the q-Pochhammer sym-

bol.
This distribution for N = 30 is shown in Fig. 3 for several

different β. A phase transition means discontinuous behavior
of some measurable characteristic as a function of a control
parameter. In our case, such a transition can be defined even
for a finite N . Namely, Fig. 3 shows that at fast sweeping
rates (large β), the probability distribution Pn has the max-
imum at N∗ = 0. However, at certain finite β, position of
the maximum, N∗, becomes not easy to define (blue curve),
and at lower β the maximum moves to a finite value N∗ > 0.
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FIG. 3. Distribution Pn for N = 30 spins and the ratio β/g2 being
4N (solid black), 3N (dotted black), 2.42N (solid blue), and 1.5N
(dashed black). Lines connect discrete points for better visibility.
The blue curve corresponds to the critical β at which the distribution
maximum starts moving from N∗ = 0 to the right. The inset shows
normalized position of the maximum, n∗ = N∗/N , as a function of
f = g2N/(β logeN) in the limit N → ∞. Discontinuity of n∗(f)
marks the position of a phase transition.

Hence, position of the maximum of the distribution does not
change continuously with β, which is a signature of a phase
transition, in which the sweeping rate β plays a role of the
control parameter.

One may wonder why this transition can be defined even
for a finite N because discontinuities in physical characteris-
tics usually appear in the thermodynamic limit. The reason
is that the probability distribution cannot be obtained by one
measurement. To estimate the position of the maximum of Pn
definitely, one must perform infinitely many measurements.
Such phase transitions “at fluctuation level” have attracted lot
of interest recently because of advances of measurement tech-
niques that probe fluctuations [23–25]. For experiments, how-
ever, we do not propose to do many repetitions because, as we
show below, this phase transition has much more accessible
manifestations in the true thermodynamic limit N � 1.

First, we note that the discontinuity in the position of the
maximum dependence on β survives even for a largeN , when
a continuous approximation to Pn is applied. Let us define the
normalized position of the maximum for the distribution (3):
n∗ = N∗/N . According to [20], in the continuous limit, if
n∗ > 0, then

n∗ = 1− loge(1− x)/(N loge x). (4)

For large N , we further look for simplification of Eq. (4) by
introducing an intensive parameter

f ≡ g2N/(β logeN), (5)

which characterizes the inverse sweeping rate. Note that
f is dimensionless because the frequency sweeping rate

β ∼[energy]2. Substituting (5) into (4), we find for N � 1:

n∗(f) =
f − fc
f

+O(log logeN/ logeN), (6)

where

fc = 1/(2π) (7)

defines the critical point for the sweeping rate β = βc =
2πg2N/ logeN at which the maximum of the probability dis-
tribution starts moving from n∗ = 0. Thus, in the thermo-
dynamic limit N → ∞, there are intensive characteristics n∗

and f , in terms of which the phase transition point (7) and the
scaling (6) do not depend on N . For β > βc, n∗ = 0, and for
β < βc we find that n∗ is growing and reaching values close
to a unit value at β ∼ g2N/ logeN , i.e. N/ logeN times
larger than the value required to reach the adiabatic limit. The
corresponding scaling near the critical point is

n∗(β) ∼
{

(βc − β)ν , β < βc, ν = 1,
0, β > βc.

(8)

Although corrections in (6) are suppressed only logarith-
mically, experiments can have, e.g., N ∼ 1012 NV-centers
coupled to a microwave mode [8], for which logeN ≈ 27, so
the estimate (7) is close to the real value for such N . More
precise position of the phase transition is given by equation
P0 = P1 with (3), which leads to a nonlinear equation that
defines the critical sweeping rate via xc ≡ e−2πg

2/βc :

xc = 1− xNc , (9)

from which the finite size corrections to (7) can be developed.
Second, the mean number of the emitted photons, Nph =
〈â†â〉, is more relevant to experiment. For N � 1, this
number should be close to the maximum of the peak value
N∗. Therefore, in the thermodynamic limit (N → ∞), Nph
should behave as the position of the maximum from the inset
to Fig. 3: Nph ≈ N∗. To check this hypothesis, we calcu-
lated the normalized average number of the emitted photons,
nph ≡ Nph/N for the distribution (3) numerically. Its depen-
dence on f for different N is shown in Fig. 4(Left), where we
also compare nph(f) with positions of the maximum n∗(f) at
the same N . At N = 50, the difference between nph(f) and
n∗(f) is noticeable but at N = 108, the average number of
the emitted photons follows predictions of Eq. (4), which also
do not change much for higher N .

Thus, nph(f) develops a singularity near f = fc with the
same power-law behavior as in (8). Moreover, away from
the critical point in the “slow” phase, it reaches the values
nph ≈ 1. That is, at much faster than adiabatic sweeping
rates, the majority of two-level systems emit photons. So, the
behavior of the system in this phase is similar to the adia-
batic one despite the adiabatic conditions are not even close
to be satisfied. The latter behavior was noticed in [17] using
semiclassical methods but only for the case without disorder
(var(εk) = 0), for which the collective emission would be
expected even at fixed resonant ω.

Figure. 4(Right) shows the critical behavior that we propose
to observe experimentally in two-level systems coupled to a
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cavity mode with a tunable frequency. The experimentally
controlled parameter here is the sweeping rate β. In order to
reach the critical point, this parameter should be

βc = g2N/(fc logeN) = 2πg2N/ logeN. (10)

The characteristic time of passage through the range of ener-

FIG. 4. Left: (discrete points) nph(f) and (solid curves) n∗(f) given
by (4), for N = 50 and N = 108 and the distribution (3). The
discontinuity at f = fc emerges for nph(f) as N → ∞. Right:
the derivative of the number of produced photons, dNph/d(1/β),
versus the inverse sweeping rate. The sharply rising piece of the
curve before the critical 1/βc (from Eq. (9)) becomes vertical in the
limit N →∞.

gies with resonances is given by 2T = 2
√

var(εk)/βc. This
should be smaller than the photon lifetime in the cavity in or-
der not to destroy the collective emission effect. The photon
loss rate is ε̄k/Q, so, the phase transition is observable when
2ε̄kT/Q < 1, or

ε̄k
√

var(εk) logeN/(πQg
2N) < 1. (11)

For NV− centers, we find then from (11) that the minimal
number of defects inside the cavity with Q = 106 should be
N = Nmin ∼ 6 · 108. At such parameters, g

√
N ≈ 0.3MHz,

and βc ∼ 104MHz/sec. That is, although the system is in the
weak coupling regime, the collective radiation for the major-
ity of initially excited spins can be induced by a frequency
chirp that crosses the region with resonances during time
2
√

var(εk)/βc ∼ 10−4sec and produces ∼ 106 − 108 pho-
tons that leave the cavity during τc ∼ 0.3 ·10−3sec. This time
estimate is below the quantum spin coherence time T2 ∼ 1ms,
which is found for NV-centers in diamond at various temper-
atures and sample quality conditions [9, 10].

Our phase transition can be understood semiclassically.
Namely, if one makes the frequency chirp sufficiently slow
to flip just ∼ logeN spins, then the positive feedback creates
an avalanche of photon emissions that propagates through the
rest of the spins. This mechanism does not rely on massive

entanglement or other quantum correlations that could be sen-
sitive to decoherence. Moreover, Landau-Zener transitions at
fast sweeping rates are particularly robust against decoherence
[26]. Hence, even for fast decoherence T2 ∼ 1µs, which is
often reported at room temperature, we expect that our phase
transition will be found.

Thus, we conclude that demonstration of a coherent light
pulse that emerges below a critical frequency sweeping rate,
β < βc, in the weak coupling regime, g

√
N <

√
var(εk),

is well within reach at cryogenic temperatures and is likely
observable even at room temperature. Our calculations also
apply to the strong coupling regime but collective emission at
strong coupling can be demonstrated by standard means [8].

There are potential applications of this effect in circuit-
QED. Although a maser on NV centers already exists [11],
collective radiation during the frequency chirp (2) can be in-
duced by a relatively small number of emitters. It should be
valuable to create such local coherent radiation pulses that can
exchange information between elements of a quantum circuit.

The dynamic phase transition that we introduced is also in-
teresting from the point of view of general physics. It is a
different phenomenon from commonly known dynamic phase
transitions [27–29], in which sharp changes encounter at some
evolution time moment. In our case, the word “dynamic” is
justified rather by the fact that the control parameter β char-
acterizes the deviation of the system from adiabaticity.

Discontinuous behavior of the order parameter and its scal-
ing near the critical point make the “fast-slow” transition sim-
ilar to standard second order phase transitions in equilibrium
systems. However, we point to one difference. Namely, phase
transitions are usually associated with spontaneous symmetry
breaking during minimization of some function of parame-
ters, such as the free energy, dissipation rate, or a Hamiltonian
ground energy. Curiously, within the driven Tavis-Cummings
model the critical behavior is found rather as a result of purely
coherent evolution. As in the theory of standard phase tran-
sitions, it is expected that this behavior is not unique for our
system but is a signature of a universality class. There can
be similar phase transitions with a different scaling near the
critical point, which we hope will be found too.
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