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We present a formalism that accounts for the interaction of a local quantum system such as an
atom or a cavity with travelling pulses of quantized radiation. We assume Markovian coupling of the
stationary system to the input and output fields and non-dispersive asymptotic propagation of the
pulses before and after the interaction. This permits derivation of a master equation where the input
and output pulses are treated as single oscillator modes that both couple to the local system in a
cascaded manner. As examples of our theory we analyse reflection by an empty cavity with phase
noise, stimulated atomic emission by a quantum light pulse, and formation of a Schrödinger-cat state
by the dispersive interaction of a coherent pulse and a single atom in a cavity.

Introduction.— Quantum states of light may find ap-
plications for precision sensing [1, 2] and as processing
or flying qubits in quantum computers and quantum
communication networks [3, 4]. While the intuition be-
hind generation of single photon and multi-photon states
and demonstration of atom-photon and photon-photon
quantum interactions portrays the state of light as a su-
perposition of Fock states of a single mode or a few modes,
propagating fields in reality explore an infinite continuum
of modes which prohibit a full quantum treatment by a
Schrödinger picture wave function or density matrix.
If the physical setup contains guided fields and mate-

rial systems with only a single shared quantum of exci-
tation, the quantum state can be expanded on discrete
excited states and single quantum wave packets (see, e.g.,
[5]). The introduction of further quanta of energy, how-
ever, complicates matters significantly, as both particle
aspects (photon number) and wave packet aspects require
a full quantum treatment such as a formal multi-photon
S-matrix scattering theory [6–8]. Alternatively, an expan-
sion of the field state restricted to the continua of, say,
one and two-photon states [9, 10] may be adequate to
describe many processes relevant to quantum information
processing with few photons [11–16]. For a recent review
of these and further theory approaches see Ref. [17].

To deal specifically with the quantum state occupying
a single pulse, a more tractable theory is desired. Indeed,
Itô calculus approaches [18, 19] lead to quantum filters
and master equations [20] and the so-called Fock master
equation [21] that permits evaluation of the state of a
quantum system which is driven by an incident quantum
pulse in a superposition of Fock states. Mean values and
correlation functions of the fields emitted by the system
can then be expressed in terms of system observables, but
they do not provide the full quantum state of the output
field.

The emission from a quantum system will not in general
be restricted to a single mode, but we can choose to exam-
ine any particular propagating wave packet and consider
the quantum state occupying just that mode after the
interaction with the quantum system. Our theory thus ac-

Figure 1. (a): An incident pulse with a temporal envelope u(t)
and arbitrary quantum state content interacts with strength√
γ with an arbitrary quantum system observable ĉ. The

system is described by a Hamiltonian Ĥs, and it is depicted
here as a two-level system inside a resonator. In this letter we
provide a theory for the full quantum state of light occupying
any reflected temporal pulse v(t). (b): We model the situation
of arbitrary travelling pulses in (a) by virtual cavities with
complex, time dependent mirror-couplings, gu(t) and gv(t),
designed so they exactly eject and absorb the modes u(t) and
v(t).

counts for the kind of experiment depicted in Figure 1(a),
where a wave packet is incident on an arbitrary quantum
system, which we assume can be adequately described in
a Hilbert space of finite dimension d. The quantum state
of a suitably defined outgoing wave packet is precisely the
information retained by typical quantum communication
or computing protocols, while the radiation which is not
captured by that mode represents loss. Our theory is gen-
eral and applies for any selected output mode function.
At the end of the manuscript we shall propose strategies
to select the most relevant, e.g., most populated, mode
function and generalizations to deal with multiple input
and output pulses.
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Theory. — In Figure 1(a), a quantum system de-
scribed by a possibly time-dependent Hamiltonian Ĥs(t)

is coupled to an input bosonic field b̂in(t) by an inter-
action (~ = 1) V̂SB(t) = i

√
γ[(ĉb̂†in(t) − ĉ†b̂in(t)] where

ĉ is a system operator. If ĉ is a lowering operator, γ is
the corresponding decay rate of excitations in the sys-
tem, and the outgoing field after interaction with the
system is given by the input-output operator relation,
b̂out(t) = b̂in(t) +

√
γĉ(t) [22, 23]. Direct application of

this expression requires knowledge of the time dependent
system operator ĉ(t) in the Heisenberg picture which is
only available if Ĥs(t) is sufficiently simple (e.g., quadratic
in oscillator raising and lowering operators ĉ and ĉ† [23]).

Since we shall treat the case of a quantum state input
occupying a single normalized wave packet u(t), it is
natural to seek a Schrödinger picture description of the
input by the Fock states |n〉, related to a single bosonic
creation operator

b̂†u =

∫
dt u(t)b̂†(t). (1)

The pulse shape is modified by the interaction and the
outgoing pulse may acquire multi-mode character, which
complicates a full numerical treatment. However, it is
possible to consider the output radiation from the system,
carried by any particular outgoing mode function v(t), as
sketched in Figure 1(a). The essential idea of our approach
is therefore to describe the input and output pulses by
two separate field modes. Assuming the Born-Markov
approximation, this can be done in an exact manner.
To alleviate the problem of dealing with the spatio-

temporal propagation of quantum fields, we note that
any arbitrary wave packet can be emitted as the out-
put from - or absorbed as the input to - a virtual
one-sided cavity with time-dependent complex coupling
i[g∗(t)âb̂†in−g(t)â†b̂in] to its input continuum fields. These
virtual cavities work as coherent beam-splitters between
the discrete intra-cavity modes and specific wave packets
incident on and emanating from the cavities. In particular,
if gu(t) is chosen such that

gu(t) =
u∗(t)√

1−
∫ t

0
dt′ |u(t′)|2

, (2)

the initial intracavity quantum state at t = 0 is emitted as
a travelling wave packet given by the time dependent mode
function u(t) [24]. An alternative protocol to release a
cavity state into a specific complex wave packet, applying
a real coupling coefficient and a time dependent cavity
detuning, was derived in [18].
Similarly, a single mode cavity with complex input

coupling

gv(t) = − v∗(t)√∫ t

0
dt′ |v(t′)|2

. (3)

will asymptotically acquire the quantum state content of
a wave packet v(t) incident on the cavity. This result is
readily shown by the equivalent equations for classical
field amplitudes and for single photon wave packets [25],

Rather than propagating pulses interacting with a local
scatterer, we can thus describe the problems as a cascaded
system with time dependent couplings, see Figure 1(b).
Due to the assumption of Markovian coupling to the
continuous field degrees of freedom and dispersion free
propagation of the wave packets, we can apply the cas-
caded system analysis by Gardiner [26] and Carmichael
[27] to obtain a master equation that involves only the
quantum states of the intermediate quantum system and
the field states of the two cavity modes, represented by
field operators âu and âv.
This can be accomplished in a systematic manner in

the so-called SLH framework [28, 29], by concatenating
the Hamiltonians and damping terms according to the
routing of output from one system into another. The
density matrix of the total system evolves according to a
master equation on the Lindblad form,

dρ

dt
= −i[Ĥ, ρ] +

∑
i=0

(
L̂iρL̂

†
i −

1

2

{
L̂†i L̂i, ρ

})
, (4)

where {·, ·} denotes the anticommutator, and the Hamil-
tonian

Ĥ(t) = Ĥs(t) +
i

2

(√
γg∗u(t)â†uĉ

+
√
γ∗gv(t)ĉ†âv + g∗u(t)gv(t)â†uâv − h.c.

) (5)

contains terms that represent coherent exchange of energy
between the three components.

The damping terms in Eq. (4) include a single Lindblad
operator of the form.

L̂0(t) =
√
γĉ+ gu(t)âu + gv(t)âv, (6)

representing the output loss from the last cavity, as well as
operators L̂i with i > 0, representing separate decay and
loss mechanisms of the quantum scatterer. The formalism
may be extended to include several input and output
modes, see supplemental materials [30].

The solution to (4) yields the density matrix of the joint
system and provides a full quantum state description of
the output mode and of its potentially entangled state
with the scatterer. Our theory thus goes far beyond the
study of expectation values and low order correlation
functions of the output field operators. The restriction
of the dynamics from the infinite continuum to only two
field modes reduces the infinite dimensional Hilbert space
to one of dimension N ≤ (N + 1)× d× (M + 1), where
N and M are the maximum number of excitations in
the incoming and outgoing modes. Our full quantum
description amounts thus to the evolution of an N ×N
density matrix ρ. Next, we shall present a few examples
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Figure 2. Scattering of a single photon in a Gaussian
mode on an empty cavity. Upper panel: The incoming pulse
u(t) (red shaded Gaussian shape) and the reflected pulse v(t)
(blue shaded non-Gaussian shape), given by (7). The solid
(dashed) curves show the squared coupling strengths |gu(t)|2
and |gv(t)|2, given by Eqs. (2) and (3). Lower panel: Average
photon number as a function of time in the incoming and
outgoing pulses and inside the cavity.

of our formalism. Numerical solutions to the master
equation (4) are obtained using the QuTiP toolbox [31,
32].

Examples. — As a first example of our formalism, we
consider the scattering on an empty, one-sided cavity with
resonance frequency ωc. The local system Hamiltonian is
Ĥs = ωcĉ

†ĉ and scattering with coupling amplitude √γ
of the input field to the cavity field is readily described
by a frequency dependent reflection coefficient r(ω) =
[i(ω − ωc) + γ/2]/[i(ω − ωc)− γ/2]. That is, the Fourier
transformed pulse shapes obey

v(ω) = r(ω)u(ω). (7)

In the upper panel of Figure 2, we show how a real
Gaussian pulse u(t) is reflected into a mode v(t) which is
also real but has a sign change around the time γt = 4.
The squared value of the corresponding coupling strengths
|gu(v)(t)|2 are shown in the same panel. The lower panel
shows how the average photon number in the input, cavity
and output modes change with time for an initial one-
photon Fock state in the input pulse. We emphasize that
in this case the perfect state transfer is guaranteed to the
known output mode. If we solve the master equation (4)
with any other choice of output mode, the transfer will
be imperfect.

As an example of a system that scatters a single input
pulse into a multi mode output, we consider phase noise
in the system, e.g., due to a jittering of one of the cavity
mirrors on a timescale τjit. This imposes an additional
Lindblad term L̂1 = τ

−1/2
jit ĉ†ĉ in the master equation (4)

(see Ref. [33] for an extended discussion of this model)
but poses no problem for our numerical solution of the
problem.

In Figure 3, we present calculations for the same input
and output modes as in Figure 2 with the incoming pulse
prepared in a coherent state |α = 2〉. The phase noise
causes an imperfect transfer to the examined output mode

v(t) and a corresponding output flux Iout(t) = 〈L̂†0L̂0〉
from the final virtual cavity at intermediate times. The
insert Wigner function shows that the quantum state of
the outgoing mode is not a coherent state but may be
described as a statistical mixture of coherent states with
reduced amplitude and rotated by a range of different
complex phases.

Figure 3. Scattering on an empty cavity with phase noise.
Main plot: Average photon number in the ingoing and out-
going modes and the flux Iout (in units of γ) from the final
virtual cavity as functions of time. Inset: Wigner function of
the outgoing mode at the final time γt = 10 with field quadra-
tures Re(〈âv〉) and Im(〈âv〉) shown along the x and y axes,
respectively. The circle illustrates the phase space location
and width of the initial coherent state in the incoming mode
u(t). Results are provided for the modes u(t) and v(t) shown
in the upper panel of Figure 2 and for an incident coherent
state |α = 2〉 and τjit = γ−1.

Through a comprehensive derivation, relying on Itô
calculus, Fischer [34] has investigated the emission from
an excited atom, stimulated by an incident quantum pulse
and particularly how efficiently such stimulated emission
occurs into the mode occupied by the incident photons.
Our formalism allows treatment of this problem with
minimal effort. Imagine a two level atom with ground
state |g〉 which is prepared in its excited state |e〉 and
decays at a rate γ by the dipole lowering operator ĉ =
|g〉 〈e|.

An exponentially decaying mode u(t) =
√

Γe−Γt/2Θ(t),
where Θ(t) is the Heavyside step function, has been iden-
tified as optimal for stimulated emission [35] where the
optimal value of Γ depends on the quantum state of the
incoming pulse. The fiducial cavity couplings leading to
this ansatz for u(t) and v(t) are given by Eqs.(2) and (3)
as gu(t) =

√
ΓΘ(t) and gv(t) =

√
Γ/(eΓt − 1)Θ(t). For

an incident one photon Fock state for which the optimal
value is Γ = γ/0.36, the interaction with the excited
atom causes the outgoing mode v(t) to first acquire a
one-photon component which is gradually replaced by a
two photon component with a final population of 0.97,
see Figure 4. This confirms that stimulated emission has
indeed occurred, but due to a minute mode mismatch,
around 0.07 photon (=

∫
dt Iout) is lost to orthogonal

modes.
As a final example, we apply our theory to a recent
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Figure 4. Stimulated emission. The figure shows the time
evolution of the populations in the one photon components of
the incoming pulse, the excited state of the atomic emitter and
the one and two photon components of the outgoing pulse. The
dotted curve shows the number of excitations γ−1

∫ t

0
dt Iout

lost into other modes.

experiment by Hacker et al. [36] where an atom with two
ground states |↓〉 and |↑〉 and one excited state |e〉 is placed
inside a cavity with an out-coupling γ. The transition
|↑〉 ↔ |e〉 is strongly coupled to the cavity mode ĉ by a
Hamiltonian Ĥs = g( |↑〉 〈e| ĉ†+|e〉 〈↑| ĉ), and an incoming
pulse, prepared in a coherent state |α〉, is reflected with or
without a phase shift depending on the state of the atom.
If the atom is prepared in a superposition (|↓〉+ |↑〉)/

√
2,

one should thus expect the outgoing light pulse to occupy
a Schrödinger-cat entangled state with the atom [37, 38],

|cat〉 =
1√
2

(|↑〉 |α〉+ |↓〉 |−α〉). (8)

This is verified by our formalism in Figure 5 where for α =
1.4 we see a 0.98 and for α = 2 a 0.96 fidelity with the cat
state (8) at the final time if we assume perfect reflection
of a Gaussian mode v(t) = u(t) centered at the time 3µs.
In realistic settings and indeed in Ref. [36], the fidelity
is hampered by atomic decay at a rate Γ and leakage
of the cavity into other channels at a rate κoc, implying
two additional decoherence channels, L̂1 =

√
Γ |↑〉 |e〉 and

L̂2 =
√
κocĉ in Eq. (4), as well as imperfections in the

matching of the recorded output mode with the actual
signal. The full curve in Figure 5 shows how these effects
lower the fidelity to 0.72 for α = 1.4 while a larger cat
state with α = 2 suffers more severely, yielding a fidelity
of only 0.56. The Wigner functions plotted at the final
time illustrate, however, that despite the imperfections,
the characteristic signature of a Schrödinger cat state
emerges in the output pulse, post selected on the atomic
state. Parameters and details concerning the Wigner
functions are given in the figure caption.
Finding the optimal output mode(s) — Our theory

permits evaluation of the quantum state content of any de-
sired output field mode, and as our examples illustrate, an
ill-chosen output mode presents a loss and an impediment
to retrieve the desired quantum state. We propose to iden-
tify the optimal mode function v(t) by first calculating the
emitter autocorrelation function g(1)(t, t′) = 〈L̂†s(t)L̂s(t

′)〉,
where L̂s(t) = gu(t)âu(t) +

√
γĉ(t). This calculation is

Figure 5. Creation of a Schrödinger cat. Results are shown for
α = 1.4 and 2.0 and assume the parameters given in Ref. [36],
(g, γ,Γ, κoc) = 2π × (15.6, 4.6, 6.0, 0.4)MHz. Left panel: Fi-
delity with the state (8) as a function of time. For comparison,
we show also the fidelity, assuming ideal conditions with no
decoherence (Γ = κoc = 0). Color plots: Wigner function of
the outgoing pulse after a π/2 spin rotation and post selec-
tion on detection of the atom in the state |↓〉. According to
Eq. (8), this procedure should ideally produce an even cat
state, (|α〉+ |−α〉)/

√
2 in the outgoing mode.

possible by application of the quantum regression theo-
rem [23, 39] to the cascaded master equation of the input
cavity and quantum system. If the emission occurs into
a single mode, the correlation function factorizes and
g(1)(t, t′) ∝ v∗(t)v(t′), while in the general case, an expan-
sion g(1)(t, t′) =

∑
i niv

∗
i (t)vi(t

′) may be used to identify
a few dominant modes with mean photon number ni for
which the output quantum state can be calculated by a
few-mode extension of our theory.
In the supplemental material [30], we describe a gen-

eralization of our theory which allows a full quantum
description of multiple output and input modes. This is
achieved by including additional virtual cavities before
and after the quantum scatterer in a cascaded fashion.
Outlook. — The formalism presented in this letter

provides, in a straightforward manner, a full quantum
description of a light pulse reflected by a quantum system
into one or more distorted modes. Our theory applies
equally well to light and other (dispersion free) carriers of
quantum states such as microwaves and surface acoustic
waves, considered in recent experiments [13, 16, 36, 40–45]
and experimental proposals [12, 15, 46–51].
We illustrated our theory by the solution of the cas-

caded master equation for the input and output field Fock
space density matrices, but the theory may also employ
Heisenberg picture and phase space approaches. Similarly,
quantum trajectory analyses of heralded or conditional
dynamics have been proposed [17, 20, 27, 52, 53] and
follow effortlessly from our formalism.

We recall that the time dependent coupling to input and
output mode cavities is a purely theoretical construction
to arrive at our simple formalism; no such couplings need
be implemented in experiments. The chiral coupling and
spatial separation of input and output fields in Figure 1
may be achieved by various means for single sided cavity
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systems, while two-sided cavities should be described by
two (reflected and transmitted) output modes, and more
complex interferometric setups with multiple input and
output ports may explore an even larger number of modes
[54].
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