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We demonstrate quantum interference of three photons that are distinguishable in time, by resolving them
in the conjugate parameter, frequency. We show that the multi-photon interference pattern in our setup can be
manipulated by tuning the relative delays between the photons, without the need for reconfiguring the optical
network. Furthermore, we observe that the symmetries of our optical network and the spectral amplitude of the
input photons are manifested in the interference pattern. We also demonstrate time-reversed Hong-Ou-Mandel
like interference in the spectral correlations using time-bin entangled photon pairs. By adding a time-varying
dispersion using a phase modulator, our setup can be used to realize dynamically reconfigurable and scalable
boson sampling in the time-domain as well as frequency-resolved multi-boson correlation sampling.

The nonclassical interference of two or more photons in
an optical network is the fundamental phenomenon enabling
many algorithms used in linear optics quantum computing [1–
4], quantum communications [5–7], metrology [8, 9] and bo-
son sampling [10–12]. Quantum interference, such as, Hong-
Ou-Mandel (HOM) and Shih-Alley interference [13, 14], usu-
ally require photons which are identical in their temporal and
spectral degrees of freedom. Any distinguishability in the
photons at the detectors leads to a reduction in the interfer-
ence. The difficulty in experimentally generating identical
photons has prompted strong interest in developing real world
optical networks enabling interference of nonidentical pho-
tons [15, 16]. Recently, it was shown that non-classical inter-
ference can be observed between photons completely distin-
guishable in time or frequency by exploiting correlation mea-
surements in the corresponding conjugate parameter [17–21].
Remarkably, the interference can occur for any values of the
input frequencies (or times) as long as the detector resolution
in the conjugate parameter is sufficient to make the detectors
‘blind’ to the spectral (or temporal, respectively) distinguisha-
bility of the photons. Furthermore, the temporal/spectral dis-
tinguishability can actually be used as a resource, for exam-
ple, to reveal spectral properties of the input photons and the
symmetries of the optical network [19, 20].

Many experiments have demonstrated interference of two
photons that are distinguishable in frequency or time by re-
solving them in the conjugate parameter [17, 18, 22, 23].
Scaling these spectrally/temporally resolved interference phe-
nomena to a larger number of photons can enable, for ex-
ample, multi-boson correlation sampling experiments where
sampling over temporal/spectral modes, in addition to spa-
tial modes, can relax the requirements on generating identi-
cal photons and could demonstrate quantum supremacy [24–
27]. Indeed, time-resolved interference of three photons with

different frequencies was demonstrated very recently where
the temporal correlations between detected photons were ma-
nipulated using a spatial network of beam-splitters [21]. In
contrast, the complementary phenomenon, that is, frequency-
resolved interference of multiple photons that are separated
in time, allows convenient manipulations of spectral correla-
tions by tuning the relative delays between photons, without
reconfiguring the spatial network [20, 27]. This scheme can
operate in a single spatial (transverse) mode and, therefore,
enable the realization of scalable temporal boson sampling us-
ing time-varying dispersion [28]. However, such frequency-
resolved interference of more than two photons has not yet
been demonstrated.

Here, we demonstrate frequency-resolved quantum inter-
ference of three photons that are completely distinguishable
in time. We show that the interference observed in the spec-
tral correlations of detected photons can be manipulated by
changing the relative delays between the photons at the input.
The interference is completely wiped out for longer delays be-
tween photons, that is when the spectral resolution of the de-
tectors is not sufficient to erase the temporal distinguishability
of the photons. Moreover, we observe that the symmetries of
the optical network and the spectral wavefunctions of photons
are reflected in the measured spectral correlations. Finally,
we also demonstrate spectral correlations in inverse-HOM in-
terference using two time-bin entangled photons where both
photons arrive either “early” or “late” [29]. In this case, we
observe that the interference is sensitive to the phase between
the two components of the entangled state, unlike the case of
unentangled photons where interference is insensitive to small
fluctuations in delay between the photons. Our experimental
setup could easily be extended to introduce time-varying dis-
persion using phase modulators and realize the temporal bo-
son sampling scheme of Ref. [28].
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FIG. 1. Schematic of the experimental setup to observe frequency-
resolved two-photon interference. Orthogonally polarized photon
pairs are generated using Type-II SPDC in a ppKTP crystal, sepa-
rated using a polarization beam-splitter (PBS), delayed and recom-
bined using a beam-splitter (BS) after polarization (red arrows) ro-
tation in one of the arms. A chirped Bragg grating (CBG) with a
spectral bandwidth more than that of the generated photon pairs, and
a time-interval analyzer (TIA) implement a time-of-flight spectrome-
ter (see supplemental material, [33]). HWP: half-wave plate (to gen-
erate entangled photon pairs), DM: dichroic mirror, PC: polarization
controller, PD: photo-diode.

To demonstrate our scheme, we discuss first the interfer-
ence of two temporally distinguishable photons in our setup
(Fig. 1). The two-photon interference can be analyzed us-
ing the spectral correlation function Γ (ω1, ω2, τ), which is
the probability of detecting two photons at the two detectors,
with frequencies ω1 and ω2, respectively and τ = t2 − t1 is
the relative delay between photons at the input. The correla-
tion function in our setup is given by [22, 23]

Γ (ω1, ω2, τ) =
∣∣∣ψ1(ω1)ψ2 (ω2) e−i(ω1t1+ω2t2)

+ ψ1(ω2)ψ2 (ω1) e−i(ω2t1+ω1t2)
∣∣∣2, (1)

where ψ1(2) (ω) is the spectral wavefunction of the first (sec-
ond) photon. The spectral correlation function depends on
t1 and t2 only through the delay τ and exhibits interference
fringes as a function of (ω1 − ω2), with fringe separation
2π/τ [28]. Furthermore, because the photons are in a single
spatial mode, the unitary transformation describing our optical
network adds an overall phase to the photonic wavefunctions
and therefore, does not contribute to the interference.

In our experiment, we generate photon pairs using spon-
taneous parametric down conversion (SPDC) (Fig. 1). A
periodically-poled potassium titanyl phosphate (ppKTP) crys-
tal (30 mm length) is pumped using a pulsed (≈ 1.6 ps) Ti-
Sapphire laser (≈ 775.5 nm, 50 mW) which generates orthog-
onally polarized, spectrally-degenerate photon pairs at tele-
com wavelengths via Type-II collinear SPDC. We separate
the two orthogonally polarized photons using a polarization
beam-splitter (PBS) and introduce a relative delay (τ) be-
tween them. We rotate the polarization in one of the arms such
that the two photons are identically polarized and collect them
into a single fiber using a beam-splitter. We then use a chirped
fiber Bragg grating (CBG), two superconducting nanowire de-
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FIG. 2. (a-d) Measured and, (e-h) simulated spectral correlations
[Γ (ω1, ω2, τ)] between two photons with varying relative delay τ at
the input. (i-l) Measured coincidence counts (maximum normalized
to unity) as a function of frequency separation (ω2 − ω1). Measured
(blue dots) and simulated (red line) (m) fringe separation, and (n)
visibility as function of the delay τ . The delay between the photons
was calibrated using HOM interference.

tectors (SNSPDs) and a time-interval analyzer (TIA) to mea-
sure the spectral correlations between photons. This setup re-
alizes a time-of-flight spectrometer where the arrival time of
dispersed photons is used to infer their frequency spectrum
[22, 23, 30–32]. Specifically, the frequency ωi of a photon
detected at the detector i is related to the time-of-arrival tdi at
the detector as (ωi − ω0) =

(
tdi − td0i

)
/φ′′. Here, ω0 is the

peak frequency of the photonic spectral wavepacket and td0i is
the peak arrival time of the photonic temporal wavepacket at
the detector i. φ′′ ' 3196 ps2 is the group delay dispersion
(GDD) of the CBG. In our measurements, we set the central
frequency ω0 (corresponding to the time td0) to be zero such
that ωi is actually the detuning from the central frequency.
The spectral resolution (δω) of our spectrometer is limited
by the timing jitter (≈ 100 ps) of the nanowire detectors and
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is ≈ 5 GHz. Furthermore, the finite delay between the in-
put photons contributes to the timing uncertainty in td0 and
marginally lowers the spectral resolution of our spectrometer
for input delay values approaching the inherent timing jitter
of the detectors.

Figures 2(a)-2(d) show quantum interference
fringes in the measured spectral correlations
[Γ (ω1, ω2) , 2-fold coincidences] for different delays
between the two photons. The interference fringes can
be seen more clearly by plotting the number of coinci-
dences as a function of the frequency separation ω2 − ω1

[Figs. 2(i)-2(l)]. As expected, the fringe separation decreases
as 1/τ [Fig. 2(m)]. Moreover, we see that the visibility (see
supplemental material [33]) of the interference decreases
with increasing delay [Fig. 2(n)], disappearing completely
for τ & 150 ps [Fig. 2(d)]. This is because of the residual
distinguishability following spectrally resolved detection for
time delays that approach the inverse of the spectral resolu-
tion δω. The interference visibility could, in principle, be
restored by increasing the spectral resolution of the detector
so that the condition δω � 1/τ is satisfied [20, 27, 28]. Our
experimental results agree well with the simulation results
[Figs. 2(e)-2(h)]. We note that similar interference in spectral
correlations has been observed in Refs. [22, 23] using the
two spatial modes of a HOM interference setup. By contrast,
in our setup, the two delayed photons are in a single spatial
mode. Furthermore, the large GDD of our CBG allows us
to observe interference between photons that are separated
by delays as long as 100 ps, which is more than 50 times
the single-photon temporal pulse-widths (estimated to be
≈ 1.55 ps).

Next we discuss the experimental setup and our observa-
tion of three-photon interference using frequency-resolved de-
tection. We pump the ppKTP crystal at higher power (400
mW) to ensure a higher probability of generating two pairs of
photons (see supplemental material). We use a PBS and two
non-polarizing beam splitters to probabilistically split the four
photons into four spatial modes [see Fig. 3(a)]. We then in-
troduce relative delays between the photons using two-photon
interference measurements as a calibration tool, and combine
three of the four spatial modes into a single fiber using a trit-
ter (3 × 3 beam-splitter). As before, the three photons are
then dispersed using the CBG, separated using a tritter and
their spectral correlations are measured using three detectors
connected to the TIA. The fourth photon is used to trigger the
TIA.

Figures 3(b)-3(e) show the measured spectral correlations
between the three photons (using four-fold joint detections) as
a function of the frequency detunings measured at the second
and the third detectors, relative to that of the first detector, that
is, (ω2 − ω1) and (ω3 − ω1). We analyze three different de-
lay scenarios 1: (τ21, τ31) ≈ (0, 15) ps, 2: (20, 40) ps and 3:
(10, 25) ps, where (τ21, τ31) are the delays of the second and
the third photon, respectively, relative to the first photon. We
observe that the interference landscape changes significantly
with the relative delays between photons. For delays symmet-
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FIG. 3. (a) Schematic of the setup to observe frequency-resolved
three-photon interference. The ppKTP crystal is strongly pumped
to efficiently generate two pairs of photons which are then prob-
abilistically separated using a PBS and two non-polarizing beam-
splitters. (b-e) Measured and, (f-i) simulated spectral correlations
between three photons (heralded by the fourth photon) with relative
delays (τ21, τ31) ≈ (0, 15) ; (20, 40) ; (10, 25) ; (350, 175) ps. (j-m)
Fourier transform (FT) of the three-photon correlation function (in
(b)-(e)), integrated over ω3. The peaks (highlighted by red dashes)
indicate beat notes associated with multiple pairwise interferences.

ric under exchange of two of the photons (τ21, τ31) ≈ (0, 15)
and (20, 40) ps, the interference fringes are periodic along
both axes. By contrast, in the case of asymmetric delays
(10, 25) ps, the constructive correlations are more prominent
along the cross-sections ω2 = ω1 (vertical), ω3 = ω1 (hori-
zontal) and ω2 = ω3 (diagonal). However, irrespective of the
delays between the photons, we always observe a construc-
tive interference for zero frequency detuning, that is, when
ω2 − ω1 = 0 = ω3 − ω1 [see Eq.1]. We also analyze
the scenario when the spectral resolution of our setup is not
high enough to erase the temporal distinguishability of pho-
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tons [Fig. 3(e)], and, as expected, we do not observe any in-
terference.

We see that the interference patterns shown in Figs. 3(b)-
3(e) are symmetric under any permutation of the frequency
detunings, for instance, ω2 ↔ ω3 or ω3 ↔ ω1, etc. This
permutation symmetry is simply a manifestation of the sym-
metry of our optical network [20]. We again emphasize that
the interfering photons propagate in a single fiber. The tritter,
together with the three detectors, at the output simply emu-
lates a number-resolving detector and does not contribute to
the interference. Moreover, the interference landscape is also
symmetric under reflections ωi ↔ −ωi, for all i, where i =
1,2,3 is the detector number, because of the symmetric fre-
quency spectra of the input photons [20].

The measured three-photon interference is dictated by the
3! three-photon detection amplitudes associated with the pos-
sible ways in which the three photons can trigger the three de-
tectors. However, it is instructive to integrate the three-photon
correlation function over one of the frequencies (here ω3) and
analyze the reduced interference as a function of the rela-
tive frequency detunings at the other two detectors (ω2 − ω1)
(see supplemental material). Fourier analysis of this 1D plot
then reveals the beat notes corresponding to the multiple pair-
wise interference terms between the three photons [Figs. 3(j)-
3(m)]. When the input delay values are configured to be
(τ21, τ31) ≈ (0, 15) ps, there is only one possible delay com-
bination between any two photon pairs and the correspond-
ing Fourier transform shows a single peak (highlighted by the
dashed red line) at 15.7 ps. For (20, 40) ps, there are two pos-
sible combinations and accordingly we observe two peaks in
the Fourier transform, at 20.9 ps and 40.4 ps. For (10, 25) ps,
there are three possible combinations and as expected, we see
three beat notes in the Fourier transform, at 10.4 ps, 15.7 ps
and 26.1 ps. The peak delay values agree well with the ex-
pected values to within 1.3 ps, the temporal resolution of the
Fourier transform.

We note that the beam splitters used in our setup to sepa-
rate photon pairs of the same polarization are not deterministic
and lead to possibilities where two photons always arrive with
zero delay (see supplemental material). However, these possi-
bilities do not add any new beat notes to the interference pat-
tern, and could easily be removed using two ppKTP crystals
to generate two photon pairs. Nevertheless, our experimen-
tal observations match very well with our simulations. We
achieve a fidelity of ≈0.95 for each of the three scenarios pre-
sented in Fig. 3(b)-3(d). The small loss in observed fidelities
is because of the small ellipticity in the joint spectral intensity
of the photons (see supplemental material).

Finally, we demonstrate frequency-resolved interference of
two photons which are entangled in their arrival times. In
particular, we consider time-bin entangled states of the form
|Ψ〉 = |2〉e |0〉l − e−iϕ |0〉e |2〉l, where both photons at the
input are in the ‘early’ time-bin (at time t1) or in the ‘late’
time-bin (at t2) and ϕ is the phase associated with the delay
between the photons. The spectral correlation function at the
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FIG. 4. (a-b, c-d) Measured and simulated spectral correlations
for time-bin entangled photon pairs, with the phase factor ∆ϕ =
0 and π. (e-f) Measured coincidences as a function of (ω1 + ω2).

output of our optical network (Fig. 1) is then given as

Γ (ω1, ω2, τ) =
∣∣∣ψ1(ω1)ψ2 (ω2) e−i(ω1+ω2)t1

+ ψ1(ω2)ψ2 (ω1) e−i(ω1+ω2)t2
∣∣∣2. (2)

The correlation function now exhibits interference fringes as
a function of the two-photon phase ϕ = (ω1 + ω2) τ , where
τ = t2 − t1 is the relative delay between the photons. This
interference is similar to the time-reversed HOM interference
where the photons are path-entangled, that is, they arrive to-
gether at either port of the beam-splitter [29]. The two photons
can then exit the beam-splitter in the same port or in different
ports, depending on the phase ϕ.

To generate time-bin entangled photon pairs we add a half-
wave plate, set at an angle of 22.5◦, before the PBS in the
setup of Fig. 1. The HWP acts as a 50 : 50 BS in the polariza-
tion domain and, when the two-photon spectral wavefunction
is symmetric, it leads to a polarization entangled two-photon
state of the form |Ψ〉 = |2〉H |0〉V −|0〉H |2〉V [31, 36, 38]. As
before, we use a PBS to introduce a relative delay between the
two orthogonal polarization modes and achieve the time-bin
entangled state |Ψ〉 = |2〉e |0〉l − e−iϕ |0〉e |2〉l. The phase ϕ
was actively stabilised using a continuous-wave telecom laser
with tunable wavelength (see supplemental material). We also
used a band-pass filter (with 75 GHz bandwidth) to ensure that
the two-photon spectral amplitude is symmetric, and verify
the entanglement using polarization- and time-resolved coin-
cidence measurements (see supplemental material).

Figures 4(a),4(b) show the measured and simulated spectral
correlations for the time-bin entangled two-photon state where
we set t2 − t1 = 40 ps, much longer than the single-photon
pulsewidths (estimated to be ≈ 5.4 ps following the bandpass
filter). We observe interference fringes in the correlations as
a function of two-photon phase (ω1 + ω2) τ [Fig. 4(c)]. This
contrasts with the interference for a separable state of two-
photons with a delay (Fig. 2) where interference pattern is ro-
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tated by 90◦ because of its dependence on (ω1 − ω2) τ . Fur-
thermore, as in the time-reversed HOM interference, the inter-
ference observed here is sensitive to small changes in the two-
photon phase ϕ. For example, by introducing an additional
small delay ∆τ (few fs) such that ∆ϕ = (ω1 + ω2) ∆τ = π,
we observe the complimentary interference where the peaks
are replaced by troughs and vice-versa [Figs. 4(d)-4(f)]. We
note that the marginal decrease in the observed visibility for
interference of time-bin entangled photons compared to the
unentangled photons (Fig. 2) is because of the imperfections
in the entangled state preparation and the sensitivity to resid-
ual path length fluctuations in the interferometer (see supple-
mental material).

In summary, we have demonstrated frequency-resolved in-
terference of three photons that are separated in time using
a single dispersive element. Using a larger number of pho-
tons and a time-varying dispersion element, such as, a phase
modulator, our setup could realize temporal boson sampling
in a single spatial mode with easily reconfigurable unitary
transformation and explore phase transitions in the complex-
ity of sampling [28, 33, 39]. Our scheme can also be used to
implement scalable multi-boson correlation sampling where
the photonic correlations are sampled over spatial as well as
temporal/spectral modes at the input/ouput of a random lin-
ear optical network with multiple spatial modes [24, 27]. Fi-
nally, these experimental results may pave the way to new
techniques for the experimental characterization of optical
networks and their input photonic states with potential ap-
plication in quantum information processing and metrology
[20, 40, 41].
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