
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Engineering Quantum States of Matter for Atomic Clocks in
Shallow Optical Lattices

Ross B. Hutson, Akihisa Goban, G. Edward Marti, Lindsay Sonderhouse, Christian Sanner,
and Jun Ye

Phys. Rev. Lett. 123, 123401 — Published 17 September 2019
DOI: 10.1103/PhysRevLett.123.123401

http://dx.doi.org/10.1103/PhysRevLett.123.123401


Engineering Quantum States of Matter for Atomic Clocks in Shallow Optical Lattices

Ross B. Hutson,∗ Akihisa Goban, G. Edward Marti, Lindsay Sonderhouse, Christian Sanner, and Jun Ye
JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA and

Department of Physics, University of Colorado, 390 UCB, Boulder, CO 80309, USA
(Dated: July 29, 2019)

We investigate the effects of stimulated scattering of optical lattice photons on atomic coherence times in a
state-of-the art 87Sr optical lattice clock. Such scattering processes are found to limit the achievable coherence
times to less than 12 s (corresponding to a quality factor of 1 × 1016), significantly shorter than the predicted
145(40) s lifetime of 87Sr’s excited clock state. We suggest that shallow, state-independent optical lattices with
increased lattice constants can give rise to sufficiently small lattice photon scattering and motional dephasing
rates as to enable coherence times on the order of the clock transition’s natural lifetime. Not only should this
scheme be compatible with the relatively high atomic density associated with Fermi-degenerate gases in three-
dimensional optical lattices, but we anticipate that certain properties of various quantum states of matter–such
as the localization of atoms in a Mott insulator–can be used to suppress dephasing due to tunneling.

Owing to dramatic improvements in both the precision and
accuracy of atomic spectroscopy over the last decade [1–3],
there is growing interest in the use of atomic clocks as quan-
tum sensors in tests of fundamental physics [4–8]. Recent
demonstrations of spectroscopic techniques, which are im-
mune to local oscillator noise, promise to dramatically im-
prove the precision of such tests [9–12]. In the absence of
local oscillator noise, frequency measurements of a single
atom follow a binomial distribution and, for Ramsey spec-
troscopy [13], are spread about its true transition frequency
ω0 by an amount (ω0T )−1, given in fractional frequency units
with T being the coherent evolution time. In the absence of
entanglement, interrogation of a sample of N atoms with an
experimental cycle time Tcyc. results in a quantum projection
noise (QPN) limit [14],

σQPN =
1

ω0T

√
Tcyc.
N

. (1)

That is, one wants to increase the interrogation time and use
a larger number of atoms in order to reduce the measurement
noise.

To date, the lowest reported QPN limit (σQPN = 1.5 ×
10−17/

√
Hz) was achieved using a fermi-degenerate gas of

N ≈ 104 87Sr (ω0 ≈ 2π × 429 THz) atoms loaded into
the Mott-insulating regime of a three-dimensional (3D) op-
tical lattice [12, 15]. In these experiments, coherence times
were found to be less than 12 s and presumed to be limited
by Raman scattering of photons from the deep optical lat-
tice [16, 17]. While these scattering processes may be reduced
by operating in a shallower optical potential, one then intro-
duces site-to-site tunneling as an additional dephasing mech-
anism [18–20].

In this Letter, we discuss a solution that simultaneously
addresses both the lattice photon scattering and tunneling in-
duced dephasing problems in 3D optical lattice clocks: shal-
low optical lattices with increased lattice constants, a. We
find that not only should the decreased kinetic energies in the
ground band of such a lattice be sufficient to suppress mo-
tional dephasing in a single atom picture, but additionally,
for a nuclear-spin polarized Fermi gas at half-filling, inter-

electronic-orbital interactions should provide an additional
mechanism for reducing motional dephasing rates. In such a
system, atom numbers on the order of N = 105 and coherent
interrogation times up to T = 140 s seem readily achievable
and correspond to a QPN limit of σQPN < 10−19/

√
Hz.

Before describing the details of our proposal, we build upon
previous work which investigated trap depth dependent de-
population of the 5s5p 3P0 excited clock state (|e〉) in 87Sr
one-dimensional optical lattices as a signature of the Raman
scattering problem [16, 17]. By leveraging the improved con-
trol over motional degrees of freedom [15] and imaging tech-
niques [12] available in a Fermi-degenerate 3D optical lattice
clock, we additionally investigate the corresponding loss of
Ramsey fringe contrast.

A spin-polarized degenerate fermi gas is created by evap-
oratively cooling atoms in an equal mixture of the mF =
−5/2, . . . , 9/2 magnetic sublevels of the 5s2 1S0 electronic
ground state (|g〉) before a focused laser beam, detuned
from the 5s5p 3P1 intercombination line, provides a state-
dependent potential, removing nearly all but the mF = 9/2
atoms from the trap. Approximately 2 × 103 atoms with a
temperature of 20% of the Fermi temperature are then loaded
from the running wave optical dipole trap into a cubic opti-
cal lattice. Each arm (i = x, y, z) of the lattice is formed by
a retroreflected laser at the magic wavelength (λmagic) [21],
and is characterized by a variable depth Vi and a lattice con-
stant a0 = λmagic/2 = 407 nm. The i = z lattice arm is
oriented along both gravity and an applied 0.5 mT magnetic
bias field. We perform an additional step of spin purification
by coherently driving |g,mF = 9/2〉 → |e,mF = 9/2〉 with
λclk = 698 nm clock light, propagating along the i = x lat-
tice axis, then removing all remaining |g〉 atoms by cycling
on the 5s2 1S0 ↔ 5s6p 1P1 transition with resonant 461 nm
light.

For the excited state lifetime measurement, we insert a vari-
able hold time before a series of 5 µs pulses of 461 nm
light form an absorption image of the |g〉 atoms on a CCD
camera, providing a count of the |g〉 atoms, Ng , while also
removing the imaged atoms from the trap. We obtain a
count of the remaining atoms, Nẽ, by optically pumping
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FIG. 1. Measured (a) lifetimes and (b) coherence times. Experimen-
tal data are shown in black points along with 1σ error bars. Results
of the master equation simulation are shown as shaded red regions.
The solid red line in (a) represents the fitted decay rate from Ref. 17.
[horizontal lattice depths]

5s5p 3P0,
3P2 → 5s5p 3P1 with light resonant on the

5s5p 3P0,
3P2 ↔ 5s6s 3S1 transitions at 679 nm and 707 nm.

Atoms then rapidly decay to the ground state, via the 21 µs
lived 5s5p 3P1 [22], where they are subsequently imaged with
461 nm light. We note that this readout method counts not
only atoms in |e,mF = 9/2〉, but all atoms in the metastable
5s5p 3P0,

3P2 manifold in the quantity Nẽ. The decay of the
excited population ρẽẽ = Nẽ/(Ng +Nẽ) is then fit to extract
a 1/e lifetime.

These lifetimes are measured for various lattice depths, Vz ,
ranging from 5Er to 310Er, while fixing Vx = 59(2)Er and
Vy = 70(2)Er, where Er = h2/8ma20 ≈ 3.5 h · kHz is the
lattice photon recoil energy, h the Planck constant, and m the
atomic mass. Fig. 1(a) shows the trap depth dependence of
the extracted lifetimes. We find the measured lifetimes to be
significantly shorter than the predicted τ0 = 145(40) s natu-
ral lifetime [23], yet largely consistent with numerical simu-
lations with no free parameters (shaded red region) in which
two-photon Raman transitions, stimulated by the lattice light,

distribute atoms amongst the 5s5p 3PJ manifold where the
atoms can then spontaneously decay to the ground state from
5s5p 3P1. The vacuum limited lifetime of atoms prepared
in |g〉 is independently measured to be > 100 s. An energy
level diagram depicting the Raman scattering processes, and
the master equation used in the simulation can be found in
Ref. 24.

Such scattering events are detrimental to clock operation
as they destroy the coherence ρeg between the two clock
states [25]. Using imaging spectroscopy [12, 15], we ob-
serve this loss in coherence as a reduction in the Ramsey
fringe contrast for increasing dark time, T . The contrast de-
cay at a given lattice depth is then fit to extract a 1/e coher-
ence time. The results of such measurements are shown in
Fig. 1(b) for the same lattice conditions as in Fig. 1(a). The
observed coherence times are found to scale proportionally to
V −1tot. (Vtot. =

∑
i Vi) for Vz > 20Er, yet they fall signif-

icantly below the predicted decoherence rate due to Raman
scattering (shaded red region) [24].

This suggests that other, lattice depth dependent, decoher-
ence mechanisms are present in the system. Rayleigh scatter-
ing is not expected to directly contribute as a dephasing mech-
anism since the scattering amplitudes are identical for both
clock states in a magic wavelength trap [16, 26]. However,
both Raman and Rayleigh scattering processes can heat atoms
out of the ground band of the lattice [27] at which point, we
suspect, they are able to tunnel around and dephase through
contact interactions.

For Vz < 20Er, coherence times are seen deviate from the
V −1tot. scaling and instead rapidly decay. This decay is accom-
panied by a loss in atom number which we attribute to signif-
icant tunneling rates along the i = z lattice and inelastic col-
lisions [28]. This demonstrates the difficulty in overcoming
the Raman scattering problem in conventional optical lattice
clocks. One would like to operate in an optical trap shallow
enough to make scattering induced decoherence rates compa-
rable to the natural lifetime — one requires Vi <∼ 4Er for 87Sr
— but then one finds additional, tunneling enabled dephasing
mechanisms due to the increased kinetic energy scale.

We address this issue in the following proposal. Hereafter,
we assume a uniform lattice, Vi = V , and for the time being,
a non-interacting gas. For a Ramsey type experiment in an in-
ertial reference frame, tunneling at a rate t along the direction
of the probe laser results in a loss in contrast of the spectro-
scopic signal according to ρeg = |J0(4tT sin(φ/2))|, J0 be-
ing the zeroth order Bessel function of the first kind [20], and
φ = 2πa/λclk, the site-to-site phase shift of the clock light
where we now allow for a variable lattice constant, a, as de-
picted in Fig. 2(a) and Fig. 2(b). For the purpose of comparing
different energy scales of the system, we define the argument
of the Bessel function,

γt = 4t| sin(φ/2)| , (2)

as the “motional dephasing rate”. As a practical example, such
a variable spacing lattice can be engineered, while restricting
the wavelength of the trapping light to be magic by interfering
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FIG. 2. (a) Motional dephasing in a conventional, a/λclk ≈ 0.6
lattice. An atom in an equal superposition of |g〉 and |e〉 is depicted
as the face of a clock where the position of the hand reflects the rela-
tive phase between the atomic superposition and the local oscillator.
Upon tunneling to an adjacent lattice site, the relative phase changes
by an amount φ ≈ 1.2π. (b) Motional dephasing can be eliminated
by matching the lattice constant to the probe wavelength. An atom
then sees the same local oscillator phase at each lattice site. (c) Cal-
culated motional dephasing rates (γt), kinetic energies (t∗ = 12t),
and interaction energies (U ) as a function of lattice spacing, a, in a
V = 4Er lattice. The horizontal grey line represents the inverse life-
time (τ−1

0 ) of the strontium clock transition. Single particle motional
effects are suppressed below the natural decay rate for a >∼ 2 µm.

the lattice beams at an arbitrary angle, θ, giving a spacing
a = λmagic/|2 sin(θ/2)| [29–31], or with an optical tweezer
array [32].

Under the harmonic approximation, the tunneling rate for
fixed V scales exponentially with a as [33]

t(a)

t(a0)
=

√
a0
a

exp

[√
V

Er

(
1− a

a0

)]
. (3)

One can think of this intuitively as a change in the lattice con-
stant rescaling the lattice recoil energy, Er → (a0/a)2Er,
such that the lattice depth in units of the new recoil energy
can be made quite large for modest increases in a/a0. Numer-
ical values of γt and the total kinetic energy , t∗ = 12t, for
a V = 4Er lattice are shown in Fig. 2(c). For a sufficiently
large lattice constant, the atomic limit (t → 0) is achieved
where tunneling related effects can be neglected. We find that
both γt and t∗ are suppressed below τ−10 for lattice spacings
a >∼ 2 µm.

Additionally, γt is found to sharply drop to zero upon

matching the condition a/λclk mod 1 = 0. These reso-
nances can be understood in a momentum space picture where
the clock photon recoil is matched to a reciprocal lattice vec-
tor and thus absorption or emission of a clock photon leaves
each atom’s motional state unchanged. In this case, for a
nuclear-spin polarized gas at half filling, the system behaves
as a band insulator throughout clock spectroscopy as the indis-
tinguishability of all atoms is preserved. This scheme, how-
ever, requires an accuracy in θ beyond the 2 × 10−5, and
2 × 10−2 levels for the a/λclk = 1, 2 configurations, respec-
tively. Throughout this range of parameters (1 < a/a0 < 5)
the lattice bandgap is greater than h · 2 kHz, and the effective
Rabi coupling is suppressed by no more than 60% of the bare
Rabi coupling such that carrier resolved spectroscopy is easily
achievable; line-pulling effects from off-resonant excitation of
motional sidebands can be suppressed below the 10−19 level
for Rabi frequencies below 10 Hz, as shown in Fig. S4 [24].

Many-body effects arise through an on-site interaction en-
ergy U parameterized by the anti-symmetric inter-electronic-
orbital s-wave scattering length, aeg− = 69.1(0.9) aB [34],
where aB is the Bohr radius. This energy scale decreases al-
gebraically with an increasing lattice constant,

U(a)

U(a0)
=
(a0
a

)3/2
, (4)

such that for sufficiently large lattice spacings, the system en-
ters the Mott-insulating regime (t∗/U � 1) [35, 36]. Here,
for a sufficiently cold gas at half-filling, the only available
excitations below the energy gap U are of the order of the
superexchange energy J = 4t2/U . Thus we expect, for a
sufficiently weak probe pulse, the motional dephasing rates
to be suppressed by a factor of t/U as compared to the non-
interacting case. Numerical values for U in a V = 4Er lattice
are shown in Fig. 2(c).

We investigate these effects with a “toy model” consisting
of a double well potential. We assign the following Hamilto-
nian in the rotating wave approximation,

H/h̄ =
∑
x

[∆

4
(nx,e − nx,g) +

U

2
nx,gnx,e

+
Ω

2
eiφxc†x,ecx,g

]
− t
∑
σ

c†L,σcR,σ + H.c.

(5)

to such a system. Here c†x,σ (cx,σ) creates (destroys) a fermion
with internal state σ ∈ {g, e} in well x ∈ {L,R}, nx,σ =
c†x,σcx,σ , ∆ = ω − ω0 is the difference between the fre-
quency of the driving field ω from the atomic resonance, ω0,
Ω is the Rabi coupling strength, and φx = 2π a

λclk
δx,R is the

site-dependent phase shift of the clock light, with δi,j being
the Kronecker delta function. The two atom spectrum of this
Hamiltonian with Ω = 0, is shown in Fig. 3(a).

We simulate Ramsey spectroscopy of one and two atoms
in the double well by numerically integrating the Schrödinger
equation. A resonant (∆ = 0) π/2-pulse with Ω � t places
each atom in an equal superposition of ground and excited
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FIG. 3. (a) Energy spectrum of Eqn. 5 at half-filling. States with
zero, one, and two atoms in |e〉 are shown as blue, red, and green
lines, respectively. The |gg〉 and |ee〉 states are non-interacting due
to the Pauli exclusion principle. The |eg〉 ± |ge〉 states are spread
by twice the Bloch band width at U = 0. Whereas in the Mott-
insulating regime (U/t � 1), an energy gap U opens up and a pair
of weakly interacting states become spectroscopically resolvable. (b)
Dephasing rates, as given by Eqn. 6, for one (red dashed line) and
two (solid blue line) atoms in a double well potential. The tunneling
rates and interaction strengths as a function of lattice spacing are
taken from Fig. 2(c) and inserted into the double well Hamiltonian
with Ω/2π = 0.5 Hz. The curves are not plotted for 4t > Ω where
the analogy between the double well system and an infinite lattice
breaks down as the discrete levels of the finite sized system become
resolved.

electronic states. For a/λclk mod 1 6= 0, this pulse also
changes the system’s motional state. During field-free evo-
lution (Ω = 0), the different motional states beat against each
other causing a dephasing of the spectroscopic feature. We
quantify this effect with the following relation,

γ =
√
〈H2〉 − 〈H〉2. (6)

For a single atom, this quantity approximates the dephasing
rate in an infinite lattice, γt, falling off with an envelope pro-

portional to t as shown in Fig. 3(b) (red dashed line). For two
atoms, we observe that as one begins to resolve the interaction
energy (Ω � U ) the dephasing rate becomes proportional to
the superexchange energy, falling off with an envelope propor-
tional to t2/U as shown in Fig. 3(b) (solid blue line). While
the exact numerical prefactor differs slightly from what one
would get for an infinite lattice [37], the general conclusion is
the same: the minimum lattice spacing such that γτ0 < 1 is
significantly relaxed as compared to the non-interacting case.

We have identified scattering of lattice photons as a domi-
nant decoherence mechanism in a state-of-the-art 3D optical
lattice clock and proposed a number of ways in which quan-
tum materials may be engineered to overcome such limits.
The improved clock stability associated with longer coherence
times will directly enable new searches for time variation of
fundamental constants and tests of general relativity on sub-
mm length scales. Additionally, the shallow optical poten-
tials described in this Letter will help reduce systematic clock
shifts related to the traps themselves, especially terms that are
nonlinear in trap depth [38, 39]. Future work will investigate
the use of atomic collisions to create metrologically useful en-
tanglement [40] and study collective radiative effects [41, 42]
for various lattice constants including the resonance condition
in Fig. 2(b).
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