
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Discontinuities in Driven Spin-Boson Systems due to
Coherent Destruction of Tunneling: Breakdown of the

Floquet-Gibbs Distribution
Georg Engelhardt, Gloria Platero, and Jianshu Cao

Phys. Rev. Lett. 123, 120602 — Published 20 September 2019
DOI: 10.1103/PhysRevLett.123.120602

http://dx.doi.org/10.1103/PhysRevLett.123.120602


Discontinuities in driven spin-boson systems due to coherent destruction of tunneling:
breakdown of the Floquet-Gibbs distribution

Georg Engelhardt1, Gloria Platero2, and Jianshu Cao1,3∗
1Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China

2Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
3Department of Chemistry, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

(Dated: August 27, 2019)

If an open quantum system is periodically driven with high frequency and the driving commutes
with the system-bath coupling operator, it is known that the system approaches a Floquet-Gibbs
state, a generalization of Gibbs states to periodically-driven systems. Here, we investigate the
stationary state of an ac-driven system when the driving and dissipation are non commutative.
Then, the resulting stationary state does not obey the Floquet-Gibbs distribution and the system
dynamics is determined by inelastic scattering processes of the driving field. Based on the Floquet-
Redfield formalism, we show that the probability distribution can exhibit population inversion and
discontinuities, i.e. jumps, for parameters at which coherent destruction of tunneling takes place.
These discontinuities can be observed as intensity jumps in the emission into the bath.

Introduction. Due to the precise experimental con-
trol, periodic driving has become a flexible tool for
quantum state manipulation with extensive applications,
e.g., quantum phase transitions, quantum transport, and
even-harmonic generation [1–14]. The study of periodic
driving becomes more interesting and challenging, as the
limit of light-matter coupling gets continuously pushed
to the ultra-strong coupling regime [15].

As a quantum system is never completely decoupled
from its environment, thermalization finally leads to re-
laxation towards a stationary state. Yet, relatively little
is known about possible stationary states of periodically-
driven systems. In two recent articles, Shirai et al.
have discussed conditions for effective Floquet-Gibbs
states [16, 17]. The probabilities of the Floquet states,
characteristic states of periodically-driven systems, are
determined by their corresponding quasienergies ελ in
a Gibbs-like fashion, thus pλ ∝ e−βελ . However, given
the richness of quantum effects in periodically-driven sys-
tems, the stationary states in these systems can deviate
from Floquet-Gibbs states and can exhibit intriguing fea-
tures [18–20].

Taking a driven two-level system coupled to the en-
vironment (Fig. 1(a)) as an example, there are addi-
tional processes which drive the system away from a
Floquet-Gibbs state. Besides the usual transitions be-
tween the Floquet states |ϕn,λ〉 within a Brilloin zone

n (marked in Fig. 1(a) with A
(0)
ij ), there are additional

transitions which are accompanied by emitting or absorb-
ing a phonon (or photon) to the environment (marked

with A
(−1)
ij ). The phonon can have one of the follow-

ing frequencies: Ω−∆ (|ϕn,0〉 → |ϕn−1,1〉), Ω (|ϕn,0〉 →
|ϕn−1,0〉 and |ϕn,1〉 → |ϕn−1,1〉), and Ω + ∆ (|ϕn,1〉 →
|ϕn−1,0〉). Here, Ω denotes the driving frequency and ∆
denotes the difference between two quasienergies. Thus,
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FIG. 1. (a) The ac-driven spin-boson model. Due to the
coherent dynamics, it emits phonons with Ω,Ω±∆ (unshifted,
blue shifted, red shifted), respectively. The corresponding
transitions are depicted in (b).

the monochromatic driving field is scattered into three
contributions. This emission is related to the Mollow
triplet [21–24], appearing for scattering of a driving field
closely in resonance with the level splitting. In contrast,
here we focus on the a fast driving regime. The emitted
phonons can be blue shifted, unshifted or red shifted, re-
spectively. The unshifted transitions do not change the
system state, but the shifted transitions can have consid-
erable influence on the dynamics.

In coherent destruction of tunneling (CDT) [25], the
transition between two quantum states can be suppressed
due to a destructive interplay of coherent wave dynam-
ics and external periodic driving [26–28]. This genuine
quantum localization appears at special ratios of the driv-
ing amplitude and frequency, which are associated with
roots of the Bessel function. CDT has been experimen-
tally verified in Bose-Einstein condensates [29], optical
wave guides [30], Fermi-liquids [31], chaotic microcavi-
ties [32] and superconducting quantum circuits [33].

This letter studies exotic stationary states appearing
for weak system-bath coupling. The key difference from
previous studies is the non-commutative coupling, which
leads to exotic non-Gibbs distributions. In particular,
we discover exotic discontinuities in the stationary state,
when smoothly increasing the driving amplitude. These
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jumps are a consequence of the CDT and can there-
fore appear in various systems. We explain how this
counter-intuitive feature is manifested in the emission of
the driven system.

Model system. We consider a spin-boson model con-
sisting of a two-level system coupled to a thermal environ-
ment. In general, two-level systems are idealizations of
more complicated level structures. The spin-boson model
is a minimal model for quantum dissipation and exhibits
quantum phenomena, including heat transfer, dissipa-
tive tunneling and quantum phase transitions [34, 35].
Adding an ac drive allows to investigate spectroscopic
properties. In a recent article, Maggazzù et al. have ex-
perimentally implemented an ac-driven spin-boson model
in a superconducting quantum circuit [33]. Also, intrigu-
ing physical effects have been theoretically investigated
in Refs. [36–42].

The Hamiltonian of the driven spin-boson model reads

H(t) =
hx

2
σx+

hz(t)

2
σz + σ̂θ

∑
k

Vk

(
bk + b†k

)
+HB, (1)

where σα with α = {x, y, z} denote the Pauli matrices,
hx denotes the tunneling amplitude and hz(t) = hz,0 +
hz,1 cos(Ωt) is the time-dependent on-site energy, where
hz,0 is the offset, hz,1 is the driving amplitude and Ω is

the driving frequency. The bath HB =
∑
k ωkb

†
kbk with

phonon frequencies ωk is quadratic in bosonic operators
bk and is coupled via the system operator σ̂θ = sin θσx +
cos θσz with strength Vk. Depending on the coupling
angle θ, undriven and driven systems can give rise to
diverse physical behavior [19, 20, 43–46].

Floquet theory describes the dynamics of periodically-
driven systems [47, 48]. Due to the driving with pe-
riod of τ = 2π/Ω, the characteristic states of the sys-
tem fulfill |Φn,λ(t)〉 = e−iεn,λt |ϕn,λ(t)〉, with quasienergy
εn,λ and periodic Floquet state |ϕn,λ(t)〉 = |ϕn,λ(t+ τ)〉.
These states are the analogue to the eigenstates in
time-independent systems. The Floquet states λ are
not uniquely defined due to the Brillouin zone in-
dex n: a state with index n can be related to the
n = 0 state by εn,λ = ε0,λ + nΩ and |ϕn,λ(t)〉 =
e−inΩt |ϕ0,λ(t)〉. The stroboscopic Floquet states are the
eigenstates of the time-evolution operator after one pe-
riod Ûs(τ) |ϕn,λ(0)〉 = e−iεn,λτ |ϕn,λ(0)〉.

In Fig. 2(a), we depict the quasienergies ελ = ε0,λ
of the isolated two-level system as function of hz,1/Ω ,
where λ = 0, 1 and n = 0. The stroboscopic dynam-

ics follows the effective Hamiltonian Heff =
hz,0

2 σz +
hx

2 J0(hz,1/Ω)σx +O( 1
Ω ) [49]. For hz,0 = 0, we find ελ =

±hxJ0(hz,1/Ω)/2, so that there are degeneracies at the
roots of the Bessel function J0(hz,1/Ω) = 0. This is the
CDT effect, as the dynamics is frozen. The stroboscopic
Floquet states read |ϕλ(0)〉 ≈

∣∣sign [J0(hz,1/Ω)] (−1)λ
〉

x
.

Accordingly, there is a non-analytic switch of the Flo-
quet state, e.g. |ϕ0(0)〉 = |−1〉x to |ϕ0(0)〉 = |+1〉x, at
the roots of the Bessel function.
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FIG. 2. (a) Quasienergy spectrum as a function of the driv-
ing amplitude hz,1. (b) and (c) depict the probabilities pλ for
θ = π/2 ( σ̂π/2 = σx) and θ = π/4 ( σ̂π/4 = 1√

2
σx + 1√

2
σz), re-

spectively. The Floquet states are approximately given by the
eigenstates of σx, which we denote by |−1〉x,|+1〉x correspond-
ing to eigenvalues −1,1, respectively. We choose hz,0 = 0 (ex-
cept for the thin lines in (b) where hz,0 = 0.05hx), ωc = 10hx,
Ω = 40hx, and kBT = 3hx. All results are presented in a
γ-independent way.

Rate equations. An important point to realize is
that though the states |ϕn,λ(t)〉 of the two-level system
are equivalent for different n in a closed system, n be-
comes physically relevant when the system is coupled to
a bath HB. The bath can trigger transitions between
different Brillouin zones n, n′. In Fig. 1(b) we illustrate
transitions associated with ∆n = n−n′ ∈ {0,−1}. Using
the secular Floquet-Redfield formalism [18, 48, 50], one
can derive the rate equations

d

dt
p0 = −

∑
∆n

A
(∆n)
1←0 p0 +

∑
∆n

A
(∆n)
0←1 p1,

d

dt
p1 = +

∑
∆n

A
(∆n)
1←0 p0 −

∑
∆n

A
(∆n)
0←1 p1, (2)

where pλ denotes the probability to be in Floquet state

λ and A
(n)
λ←µ is the transition probability between two

Floquet states:

A
(n)
λ←µ = Γ(∆n

λµ)
[
nB
(
∆n
λµ

)
+ 1
]
·
∣∣anλ←µ∣∣2 ,
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a
(n)
λ←µ =

1

τ

∫ τ

0

〈ϕλ(0)| σ̂θ(t) |ϕµ(0)〉 e−inΩtdt. (3)

Here, nB(ω) denotes the Bose distribution and Γ(ω) =∑
k V

2
k δ(ω − ωk) = γω/(ω2 + ω2

c ) (coupling strength γ,
cut-off frequency ωc) denotes the coupling density, de-
fined for negative frequencies by Γ(ω) = −Γ(−ω), and
∆n
λµ = εµ− ελ−nΩ. The time-dependent operator reads

σ̂θ(t) = eiΛ̂(t)σ̂θe
−iΛ̂(t), where Λ̂(t) is defined by the Flo-

quet states |ϕλ(t)〉 = e−iΛ̂(t) |ϕλ(0)〉 .
It is easy to show that the rates obey the detailed

balance condition A
(n)
λ←µ = A

(−n)
µ←λe

∆
(n)
λµ /T , where T is

the temperature of the environment. In general, the

A
(n)
λ←µ do not fulfill the detailed balance condition, which

gives rise to a break down of a Gibbs-like state, thus
p0/p1 6= e−(ε1−ε0)/T .
Stationary state. In the Floquet-Redfield for-

malism, the stationary density matrix reads ρs(t) =∑
λ pλ |ϕλ(t)〉 〈ϕλ(t)|, which is time periodic. For θ = 0,

the system approaches a Floquet-Gibbs state according

to Ref. [17], as the rates A
(n 6=0)
λ←µ ≈ 0 and the rates A

(0)
λ←µ

keep the detailed balance condition. This happens as
for θ = 0 the driving operator and system-bath coupling
commute [17].

Figures 2(b) and (c) depict the stationary state for
θ = π/2, π/4, respectively. In Fig. 2(b), we find a prob-
ability inversion for small hz,1/Ω and probability jumps
at the roots of the Bessel function J0(hz,1/Ω) = 0. Due

to a generalized parity symmetry, A
(0)
λ←µ vanishes ex-

actly [51]. Consequently, the rate equations are domi-
nated by the transitions ∆n = −1, as nB(|∆n>0

λµ |) � 1
due to large ∆n

λ,µ ≈ −nΩ. Thus, the transitions marked

by the red and blue arrows in Fig. 1(b) (green transi-
tions do not change the state). The corresponding coeffi-

cients
∣∣∣a(−1)
µ←λ

∣∣∣ are depicted in Fig. 3(a), where we observe

that
∣∣∣a(−1)

1←0

∣∣∣ > ∣∣∣a(−1)
0←1

∣∣∣ for, e.g., hz,1/Ω < z0, with z0 de-

noting the first root of the zeroth-order Bessel function.

As nB(∆n 6=0
λµ ) � 1 and Γ(∆

(−1)
10 ) ≈ Γ(∆

(−1)
01 ), we find

from Eq. (2) that p1/p0 ≈
∣∣∣a(−1)

1←0

∣∣∣2 / ∣∣∣a(−1)
0←1

∣∣∣2 which ex-

plains the probability inversion. The rates explain the
jump in the probability distribution. In Fig. 3(a) we ob-
serve jumps at the CDT positions, which are magnified
in Fig. 3(b). The non-continuous behavior becomes more
clear when considering Eq. (3). At the CDT, the Floquet
states switch, thus |ϕλ(0)〉 ↔ |ϕµ(0)〉, which gives rise to
the non-analytic behavior.

A similar reasoning can be applied to the σ̂π/4 coupling
depicted in Fig. 2(c). Away from the CDT, the probabil-
ity distribution mainly corresponds to the Floquet-Gibbs
state: the coupling σ̂π/4 has a σz contribution so that the

rates A
(0)
λ←µ � A

(−1)
λ←µ are close to a Gibbs state. How-

ever, the coefficients a
(−1)
λ←µ are almost equal to those of

the σ̂π/2 case giving rise to a probability jump, yet, to a
very small extent.
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FIG. 3. (a) The transition coefficients for σ̂π/2. The coef-
ficients for σ̂π/4 are almost equal. (b) Magnification of the
jump discontinuity in (a). (c) and (d) depict corresponding
intensities of blue and red shifted emitted phonons for θ = π/2
and θ = π/4 coupling, respectively. The ratio of the red and
blue shifted emission intensities for θ = π/4 is depicted in (e).
Parameters same as in Fig. 2.

Importantly, although there is a jump discontinu-
ity, the density matrix remains continuous as a func-
tion of hz,1, as the stationary density matrix ρs(t) =∑
λ pλ |ϕλ(t)〉 〈ϕλ(t)| exhibits a simultaneous switch of pλ

and |ϕλ(t)〉. Yet, the probability jump does not depend
on how the states λ = 0, 1 are labeled, as the labeling can
be uniquely defined for finite hz,0 → 0. A corresponding
quasienergy spectrum is depicted in Fig. 2(a) with thin
lines. For finite but small hz,0 the gap closing is released
as depicted in Fig. 2(a). Accordingly, the states depend
smoothly on hz,1, so that the pλ are also uniquely defined
as can be observed in Fig. 2(b). The ordering of the states
λ = 0, 1 can be thus uniquely defined in terms of the limit
hz,0 → 0. Moreover, quantum state tomography of the
stationary state for small hz,0 → 0 can experimentally
reveal the jump.

The interplay of θ and hz,1 can be fully analyzed in
Fig. 4(a), where the stationary state strongly depends
on θ, though, the system is only weakly coupled to the
environment. In particular, for θ ≈ 0.5π and small hz,1

we find inversion, p0 < 0.5, thus, there is a strong devia-
tion from the Floquet-Gibbs state, appearing for θ = 0.

Phonon emission. The nonanalytic behavior of
the probabilities can be observed in the emission. Ev-

ery transition A
(−1)
λ←µ is related to the emission of

phonons with either energy Ω, Ω ±∆. The correspond-
ing intensities Ib,r = I(Ω ± ∆) are given by Ib =
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FIG. 4. (a) shows the probability of the Floquet state |ϕ0〉 in
a stationary state of the Hamiltonian Eq. (1). (b) depicts the
difference of the blue and red shifted emission intensities into
the bath. Parameters same as in Fig. 2.

(Ω + ε1 − ε0)A
(−1)
0←1p1, Ir = (Ω− ε1 + ε0)A

(−1)
1←0p0. We de-

pict the blue and red shifted intensities in Fig. 3 (c) and
(d). For σ̂π/2, we observe that the two intensities are
almost equal. As the stationary state is governed by the

rates A
(−1)
λ←ν , we find p0 ∝ A

(−1)
0←1 and p1 ∝ A

(−1)
1←0 , so that

Ir ≈ Ib for high frequency Ω� ε1 − ε0.

For σ̂0 = σz, at which the system approaches a

Floquet-Gibbs state, it is known that the rates A
(n 6=0)
µ←ν ≈

0 [16]. Consequently, here both Ir/b vanish. Consider-
ing the difference Ib − Ir in Fig. 4(b), we consequently
find that the difference is smooth in hz,1 for both limiting
cases θ = 0, π/2. However, in between there is a signifi-
cant jump, which is the strongest for about θ ≈ 0.3π.

Let us consider the σ̂π/4 coupling. Due to the σz cou-

pling component, the A
(0)
λ←ν rates are dominant, which

leads to an (almost) thermalization of the system with

its environment. However, the rates A
(−1)
λ←ν still exhibit a

jump at the CDT, so that we find jumps in Ir and Ib, as
can be observed in Fig. 3(d).

Magnus expansion. To develop further insight, we
evaluate the rates Eq. (3) using the Magnus expansion
in a rotating frame for a high driving frequency [52, 53].
Details can be found in the supplementary materials [49].
We obtain

a
(n)
µ,λ = S(n)

x 〈σx〉µλ + i · S(n)
y 〈σy〉µλ + S(n)

z 〈σz〉µλ , (4)

where we have defined 〈σα〉µλ = 〈ϕµ(0)|σα |ϕλ(0)〉. The

coefficients S(n)
α depend on the system parameters and,

importantly, are real valued.

The a
(n)
µ,λ are evaluated in Tab. I. Due to a sym-

metry condition, some of the S(n)
α vanish exactly. For

n = 0, we find a hermitian structure for the eigenstates
|ϕλ(0)〉 ≈ |−1〉x , |+1〉x, which are mainly determined by

TABLE I. Coupling coefficients a
(n)
µ,λ of all possible transitions

between different Floquet states |ϕλ(0)〉.
n = 0 |−1〉x |+1〉x
|−1〉x S

(0)
x S(0)

z

|+1〉x S
(0)
z −S(0)

x

−1 |−1〉x |+1〉x
|−1〉x S(−1)

x S(−1)
y + S(−1)

z

|+1〉x S
(−1)
y − S(−1)

z −S(−1)
x

H
(0)
eff ∝ σx. For n = −1, the transition coefficients are

dominated by S(−1)
y ∝ J−1(hz,1/Ω), which explains the

oscillations in Fig. 3(a). Importantly, they do not exhibit
a hermitian structure. This leads to a breakdown of the
detailed balance relation, and gives rise to the jumps in
Fig. 2(b) and (c). This appears as |ϕ0(0)〉 switches from
|−1〉x to |+1〉x and, simultaneously, |ϕ1(0)〉 switches from

|+1〉x to |−1〉x, causing a jump of a
(−1)
µ,λ .

We can use Eq. (4) to understand the intensity jump.
Expanding around a root z0 of the Bessel function
J0(z0) ≈ 0, we find Ired/Iblue ≈ 1±2hxΩ α with a constant
α, and ’±’ for hz,1/Ω ≶ z0. Interestingly, the effect scales
as 1/Ω near the CDT (Fig. 3(e)).

Discussion. The CDT in a driven dissipative sys-
tem gives rise to surprising effects. The presence of a
bath can give rise to inversion and jumps due to CDT
in the probability distribution of the Floquet state. As
there is a simultaneous discontinuity of Floquet states,
the reduced density matrix remains continuous. Conse-
quently, the probability jumps can not be detected in
system observables. Yet, precursors of the jump can be
observed when the driving has a constant off-set (thin
line in Fig. 2). Moreover, the jump behavior has a conse-
quence on the emission, such that the blue and red shifted
intensities can exhibit a discontinuity at the CDT. This
can be measured by phonon spectroscopy. For our pa-
rameters, the ratio of the shifted intensities exhibits a
jump of about 10%.

The underlying reason for these discontinuities is a
crossing of the Floquet states at the CDT. This causes a
jump in the transition coefficients of the rates in Eq. (3).
Consequently, the effect does not depend on the details
of the bath. Yet, the system-bath coupling operator is
important. For a σ̂0 = σz coupling as investigated in
Ref. [16], the stationary density matrix of the system re-
covers the Floquet-Gibbs states. For σ̂π/2 = σx, we find
extreme deviations from the Floquet-Gibbs state with
probability inversion as observed in Fig. 2(b). With this
non-commutative coupling, the probability jump at the
CDT turns out to be most significant. However, there is
no signature in the frequency-shifted intensities. For σ̂π/4
coupling, though the probability jumps are very small,
there is a clear jump discontinuity in the blue and red-
shifted intensity.

The noncontinuous behavior is general. First, it
is not a consequence of the high-frequency regime,
which we considered here to obtain analytical calcula-
tions. The CDT appears due to an exact degeneracy of
the quasienergies which is persistent even for very low
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driving-frequencies [48]. Consequently, the jump behav-
ior could remain when lowering the driving frequency.
Second, our findings are not restricted to the dissipative
two-level system. Similar probability jumps could also be
observed in a dissipative driven Lipikin-Meshkov-Glick
model, which gives rise to many-body CDT [52]. Fur-
thermore, these findings will be important for electronic
transport [54–56]. It will be interesting to explore the fate
of the jumps for stronger environmental coupling using
methods such as in [57–61].

Periodic driving provides a flexible, but highly control-
lable tool to manipulate quantum systems. Given the
findings in this letter, one could employ the jump effect
to create transistor-like switches, as the frequency-shifted
intensities sensitively depend on the driving amplitude.
Due to the various driving modes and the extensive pa-

rameter space, it is not surprising that the probability
jumps remained undiscovered. For instance, when the
driving force is a rotating field, thus cos(Ωt)σx+sin(Ωt)σy

as in Refs. [39–41], the probabilities jumps do not appear,
as the system does not exhibit CDT.
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