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We demonstrate experimentally an autonomous nanoscale energy harvester that utilises the
physics of resonant tunnelling quantum dots. Gate defined quantum dots on GaAs/AlGaAs high-
electron-mobility transistors are placed on either side of a hot electron reservoir. The discrete energy
levels of the quantum dots are tuned to be aligned with low energy electrons on one side and high
energy electrons on the other side of the hot reservoir. The quantum dots thus act as energy filters
and allow for the conversion of heat from the cavity into electrical power. Our energy harvester, mea-
sured at an estimated base temperature of 75 mK in a He3/He4 dilution refrigerator, can generate
a thermal power of 0.13 fW for a temperature difference across each dot of about 67 mK.

In recent years there has been an increased interest in
devices which can convert waste heat into useful work [1].
Thermoelectric generators where a temperature bias ap-
plied to an electric conductor gives rise to a charge cur-
rent flow are good candidates [2, 3]. Unfortunately, cur-
rent thermoelectric devices have relatively small efficien-
cies [4]. This issue can be overcome by nanoscale ther-
moelectrics where engineered bandstructures and quan-
tum mechanical effects can give rise to an increased effi-
ciency [5–7]. Quantum dots constitute an important ele-
ment in designing highly efficient thermoelectrics [8–11]
because their discrete resonant levels provide excellent
energy filters. Thermoelectric effects have been investi-
gated in various quantum-dot setups [12–23].

Energy harvesting devices require that the energy
source is separated from the electrical circuit, so no
charge is extracted from it [24]. This can be accom-
plished in three-terminal devices where a hot terminal
injects heat but no charge into the setup, thus driving a
charge current between two cold reservoirs. There have
been a number of proposals for these kinds of energy har-
vesters [25–44]. Three-terminal heat engines based on
Coulomb-coupled quantum dots [26, 27] have been real-
ized experimentally recently [45–47]. Due to their design
they are however limited to low power. A three-terminal
energy harvester based on two resonant-tunneling quan-
tum dots with different energy levels overcomes this is-
sue. It can in principle reach Carnot efficiency and can
be optimized to achieve a large power in combination
with a high efficiency at maximum power [33]. A similar
device has also been proposed [48, 49], and later demon-
strated [50], as a building block of a nanoscale refrig-
erator. In this manuscript, we experimentally realize a
resonant-tunneling energy harvester and demonstrate its
ability to generate electrical power in an external load

arising from energy exchanges between a hot and a cold
reservoir. Importantly, no external drive or cycling is re-
quired; that is, the system is entirely autonomous and
begins producing power as soon as a thermal gradient is
present.

The system we have investigated, shown in Fig. 1, is

∆E

TCTL TR

Q̇

I

(a) (b)

Hot cavity

R
Load Vth

1MΩ Vheat 

Iheat

VLD VRD

A B

(c)
(d)

500nm

Lock freque
ncy to 2f

(at frequency f )

FIG. 1. Resonant tunneling energy harvester. (a) Two
quantum dots connect two electronic leads (at temperature

T0 = TL = TR) to a hot cavity at TC. A heat current Q̇
at frequency f is absorbed by the flowing electrons to gen-
erate a heat current I at frequency 2f . (b) Relative energy
diagram of the heat engine. Tuning the resonant level po-
sitions filters tunneling transitions with an energy gain ∆E.
(c) False colour SEM image of the device with the electrical
circuit used for the thermopower measurement. (d) shows a
zoomed false-colour-SEM image of the right quantum dot.
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comprised of two quantum dots that connect a hot cav-
ity to two cold reservoirs [33]. By putting two quantum
dots in series with a hot cavity, electrons that enter via
the left dot are forced to gain a prescribed energy in or-
der to exit through the right dot, transporting a single
electron charge from left to right, cf. Fig. 1(a). Con-
strained by the conservation of global charge and energy
in the device, this thermal energy gain of electrons will
be converted into electrical current [33].

Fig. 1(c) shows a false-colored scanning electron micro-
graph (SEM) image of a typical device we tested, along
with the electrical circuit used in the experiments. Ti/Au
gates were patterned on the surface of GaAs/AlGaAs
heterostructure material using electron-beam lithogra-
phy. The 2DEG was 110 nm below the surface, and was
contacted by annealing AuGeNi ohmic contacts. The
mobility µ and carrier concentration n of the 2DEG
were measured to be µ ≈ 3.38 × 106 cm2V−1s−1 and
n ≈ 1.35 × 1011 cm−2 at 1.5 K. The surface gates de-
fine a cavity of 90µm2 area at the central 2DEG region
with two quantum dots respectively on the left and the
right sides, and a heating channel on the top. The quan-
tum dots, of 310 nm diameter, as shown in 1(d), are con-
structed of three barrier gates (colored red in Fig. 1(c)),
one detector gate (colored green), and one plunger gate
(colored blue). Both dots were found to have charging
energies of approximately 1.5 meV and first excited states
always at least 250µeV above the ground state. The top
heating channel (gates colored yellow in Fig. 1(c)) is con-
nected to the central cavity via a gap of 1.26µm, which
allows hot electrons to traverse into the cavity and form
different temperature profiles. Measurements were per-
formed in a He3/He4 dilution refrigerator at an estimated
base temperature T0 of 75 mK. The experiment was re-
peated with two samples, which are similar in design but
have different resonances for the quantum dots.

The thermal power generated by the energy harvester
was measured with the set-up in Fig. 1(c). An AC current
IHeat which heats electrons at frequency f = 33 Hz was
applied to the heating channel using a lock-in amplifier,
and the thermal voltage Vth was measured across A - B,
with another amplifier locking in at frequency 2f, whilst
stepping the voltage VLD on the left dot plunger gate and
sweeping the voltage VRD on the right dot plunger gate
through their respective Coulomb resonance. Since the
heating power varies as I2, the electron temperature in
the cavity oscillates at twice the frequency of the cur-
rent IHeat. Thus it was necessary to phase lock to the
2f component of V th [14]. The temperatures of the cen-
tral cavity for different AC currents may be estimated by
fitting the differential conductance of the quantum dots
with a thermally broadened resonance, see Supplemen-
tary Information for details. The cold reservoirs, which
we assume to be at base temperature T0, are connected
externally by a load resistor, RLoad. The thermal power
is then extracted by P = V 2

th/RLoad. In potential appli-
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FIG. 2. (a) The thermal voltage Vth, across the device, as a
function of left and right plunger gates measured whilst an AC
current, Iheat = 100 nA, is applied to the heating channel. The
applied Iheat results in an estimated temperature difference of
∆T = TC − TL ≈ 47 mK across the dots. (b) and (c) line
graphs through (a) at V LD = −1.924 V and V RD = −0.805 V
respectively. (d) Estimated power output of the device show-
ing the two expected operational points and a third (high-
lighted by the box with a mark star ∗) due to external circuit
impedance. The power is given by P = V 2

th/RLoad where
RLoad is the resistance loading on the circuit. (e, f) Conduc-
tance peaks of the two dots as a function of the respective
gate voltage.

cations the heating channel would be replaced by the heat
source we wish to harvest energy from and the RLoad rep-
resents an external device where useful work is done [33].

Figure 2(a) shows the thermal voltage between A and
B (in Fig.1(c)), Vth, measured with a heating current
IHeat = 100 nA and a load resistor RLoad = 500 kΩ in
the circuit. The negative thermal voltage appears at
VLD ≈ −1.924 V for the left dot, as shown in Fig. 2(c),
and VRD ≈ −0.805 V for the right dot, as in Fig. 2(b).
Fig. 2(d) is the thermal power extracted from the ther-
mal voltage of Fig.2(a), through P = V 2

th/RLoad. The
maximum thermal power is found at (−1.924,−0.805) V,
followed by the second largest thermal power point at
(−1.907,−0.829) V, in Fig. 2(d). The maxima appear
in the vicinity of the electrical conductance peaks shown
in Fig. 2(e) and Fig. 2(f) respectively. This is because
when both charge and heat are exclusively carried by
electrons, for both diffusive and ballistic transport, the
Seebeck coefficient (thermopower) S is related to the en-
ergy derivative of the conductance G [51],

S =
Vth

TC − T0

∣∣∣∣
I=0

= −π
2k2B
3e

(TC − T0)
∂ lnG

∂µ
. (1)

Here TC is the electron temperature of the cavity, T0 is
the temperature of cold reservoirs, and µ is the chemical
potential of the contacts. Meanwhile, the thermal voltage
peaks in Fig. 2(a) are also related to the energy derivative
of the conductance of the Fig. 2(e) and (f), as shown
Eq. (1). Some thermopower is detected while only one
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FIG. 3. Engine characteristics. The points of black cir-
cles, red stars and blue triangles show results of experimen-
tal measurements. Panel (a) depicts the maximum thermal
power from the measurements with different loading resis-
tance, whilst applying AC current 60 nA (black circles), 80 nA
(red stars) and 100 nA (blue triangles) on the heating chan-
nel. Panel (b) shows the thermal power and its relative ther-
mal voltage, which is also the bias voltage between A−B in
Fig.1(c). Panel (c) depicts the ratio of the estimated efficiency
through Eq. (2) with the Carnot efficiency while changing the
resistance. The solid lines show the relative theoretical mod-
eling for different heating currents leading to different cavity
temperatures, TC. The theoretical efficiency in (c) is com-
puted from Eq. (6), with resonances of ΓL = ΓR = 3.5µeV
and the energy level difference of ∆E = 45µeV of the two
dots. Parameter A = 0.8 is related to the quantum dot barri-
ers. The base temperature in the theoretical model is 85 mK.

dot is open on resonance, such as the area marked by the
star ? in Fig. 2(d). This arises from the influence of the
external circuit impedance.

Thermopower measurements were carried out using re-
sistance values (RLoad) from 50 kΩ to 3.9 MΩ in the cir-
cuit, whilst an AC current of 60 nA, 80 nA and 100 nA is
applied on the heating channel. The heating currents of
60 nA, 80 nA and 100 nA correspond to 122 mK, 130 mK
and 140 mK respectively, as discussed in Supplementary
Material. Figure 3 depicts the maximal generated power
for each measurement as a function of the load resistance
and the relative thermal voltages respectively, where
black circles represent the experimental data while a cur-
rent of 60 nA is applied on the heating channel, red stars
for 80 nA, and blue triangles for 100 nA. (Solid lines rep-
resent results from theoretical modeling and will be dis-
cussed later.) For increasing resistance RLoad, the power
increases, reaches a maximum and then drops down, as

shown in Fig. 3(a). As the heating current in the chan-
nel is increased, the power also rises. This is because
the cavity temperature increases with the heating cur-
rent, resulting in more electrons tunneling through the
two dots and converting more energy to electrical cur-
rent efficiently, as predicted in the theoretical proposal
[33]. Interestingly, the maximum power always appears
around RLoad ≈ 500 kΩ for all heating currents, corre-
sponding to impedance matching between the heat en-
gine and the resistor. The power vs. thermal voltage
in Fig. 3(b) gives an estimation of the open-circuit stall
voltage of our device in each configuration. In the linear
regime one expects the maximal power to occur at half
the stall voltage [24]. The asymmetric dependence of the
measurements suggests the presence of non-linear effects.

We next turn to the efficiency of heat to work conver-
sion which is defined as the ratio of the generated elec-
trical power P to the heat current from the hot reservoir
Q̇. The heat current is given by Q̇ = κ∆T = κ(TC − T0)
where the thermal conductance κ can be estimated from
the electrical conductance G via the Wiedemann-Franz
law, κ = GLT , where L is the Lorenz number, T =
(TC + T0)/2 and G is the combination of the conduc-
tance at VRD = −0.805 V in Fig. 2(e) and that at VLD =
−1.924 V in Fig. 2(f). We remark that the Wiedemann-
Franz law in general is violated for mesoscopic conduc-
tors with strongly energy dependent transmissions such
as quantum dots [52–55]. As the thermal conductance
cannot be measured directly in our setup, we still use it
to obtain an lower bound on the thermoelectric efficiency
given by

ηw-f =
V 2
th

κ∆TRLoad
=

V 2
th

GLT∆TRLoad

, (2)

which can be compared with the theoretical efficiency
calculated below. Figure 3(c) depicts the ratio of the
estimated efficiency from Equation (2) to the Carnot ef-
ficiency (ηC = 1 − T0/TC) for 60 nA, 80 nA and 100 nA
on the heating channel respectively.

The experimental data in Fig. 2 and Fig. 3 is repro-
duced by the model of Ref. [33] which we generalize to
incorporate the effect of the external circuit. The thermo-
electric transport through each dot can be described by
the Landauer-Büttiker formalism, with the expression:

Il,n =
2

h

∫
dEEnTl(E)[fl(E)− fC(E)], (3)

giving the charge Il = eIl,0 and energy Jl = Il,1 currents
at lead l=L,R. The quantum dot resonances are defined
by a transmission coefficient

Tl(E) = Al
Γ2
l /4

(E − εl)2 + Γ2
l /4

, (4)

where the parameter Al depends on the asymmetry of the
quantum dot barriers [56]. The quantum dot resonant
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FIG. 4. Theoretical calculation of (a) the thermovoltage
and (b) the generated power with parameters of AL = AR =
1,ΓL = 0.2 meV,ΓR = 0.1 meV, αL = 0.026 and αR = 0.014,
the base temperature of T0 = 85 mK and the cavity temper-
ature of TC = 170 mK. The influence of the external load
resistance is taken into account.

energies are tuned with gate voltages, εl = εl,0 − eαlVgl.
In our experiment, the width Γl is thermally broadened
beyond the natural line width of the level. As no charge
is injected from the heating channel into the conductor,
the conservation laws for charge and energy read:

IL + IR = 0, JL + JR + Q̇ = 0. (5)

where Q̇ is the heat current injected into the central cav-
ity. For a closed circuit where the energy harvester pow-
ers an impedance RLoad, the voltages are set via Ohm’s
law, producing the thermovoltage, Vth = ILRLoad and
power of Fig. 4. Accounting for the external resistance
in the circuit gives rise to additional features not present
in an open-circuit model [33], such as the vertical and
horizontal lines in Fig. 4. Our simple model based on
resonant tunneling captures all the features of the ex-
periment, seen by the comparison of experimental data
(points of black circles, red stars and blue triangles) and
theoretical modeling results (solid lines in black, red and
blue) in Fig. 3. The theoretical efficiency, shown as solid
lines in Fig. 3(c), is computed with the general expression
of the heat current evaluated at the obtained thermovolt-
age,

η = V 2
th/(Q̇RLoad). (6)

Fig. 3(c) suggests the top theoretical efficiency of the
device is ∼ 0.5ηC , for the considered parameters. Given
its overall good agreement with experimental results, this
theoretical model provides a more realistic estimate of
the efficiency with its direct access to the heat current,
Q̇. The experimental estimates in Fig. 3(c), extracted
by Eq. (2), are only the lower bound of the efficiency,
where the thermal conductance is overestimated because
quantum dots have a smaller Lorenz ratio than L due to
the violation of the Wiedemann-Franz law as discussed
earlier [52–55].

In conclusion, we have experimentally realized an en-
ergy harvester based on resonant-tunneling quantum
dots [33] which can generate a power of 0.13 fW in an
estimated efficiency with a lower bound around 0.1 ηC.
Our theoretical model (not affected by limitations of the
Wiedemann-Franz law) suggests the actual efficiency to
be about 0.5 ηC. Experimental observations of thermal
power, voltage and efficiency at different values of IHeat

and RLoad have also been reproduced by this model.
There are small quantitative differences between experi-
mental results and theoretical modeling in terms of pa-
rameters, such as electrical temperatures and energy level
difference. This may be explained by asymmetric bar-
riers, accidental degeneracies or the broadened lifetime
width of the quantum dots, as well as charging effects in
the non-linear regime. Also, the oscillation brought with
the AC heating and AC measurements can increase ther-
mal broadening in the cavity, and therefore cause inaccu-
racy in the measurement results. Overall, this proof-of-
principle experiment demonstrates the basic soundness
of the theory of mesoscopic energy harvesting with en-
ergy filtering techniques at the quantum level, realizing
a heat engine.

We propose several possible improvements for future
work. First, we can improve the power and efficiency by
optimizing the resonance width Γl as well as the sym-
metry of the quantum dots. Second, DC heating and
measurement techniques can be used to avoid unneces-
sary oscillations of voltages and temperatures in the de-
vice. Finally, the performance of the energy harvester
may be enhanced by scaling it up in size with resonant-
tunneling quantum wells, which may increase the max-
imum power up to fractions of W/cm2 at 300 K [34],
or by using smaller dots or molecules, whose large level
spacing allows the system to operate at higher tempera-
tures [33, 57, 58].

We are grateful to Dr. J. Waldie for technical as-
sistance. This work was funded by EPSRC(UK). GJ
acknowledges financial support from China Scholarship
Council and GBCET. RS acknowledges financial support
from the Spanish MINECO via grant FIS2015-74472-JIN
(AEI/FEDER/UE), the Ramón y Cajal program RYC-
2016-20778 and through the “Maŕıa de Maeztu” Pro-
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M. Büttiker, New J. Phys. 15, 095021 (2013).
[35] C. Bergenfeldt, P. Samuelsson, B. Sothmann, C. Flindt,
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