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Fermi gases in two dimensions display a surprising collective behavior originating from the head-on
carrier collisions. The head-on processes dominate angular relaxation at not-too-high temperatures
T � TF owing to the interplay of Pauli blocking and momentum conservation. As a result, a large
family of excitations emerges, with an odd-parity angular structure of momentum distribution and
exceptionally long lifetimes. This leads to “tomographic” dynamics: fast 1D spatial diffusion along
the unchanging velocity direction accompanied by a slow angular dynamics that gradually ran-
domizes velocity orientation. The tomographic regime features an unusual hierarchy of time scales
and scale-dependent transport coefficients with nontrivial fractional scaling dimensions, leading to
fractional-power current flow profiles and unusual conductance scaling vs. sample width.

Disorder-free electron systems in which the electron-
electron (ee) collisions are predominantly momentum-
conserving, can exhibit a hydrodynamic behavior rem-
iniscent of that in viscous fluids [1–5]. Electron hydro-
dynamics, a theoretical concept describing this regime
in terms of quasiparticle scattering near the Fermi sur-
face, has been steadily gaining support in recent years
for a range of electronic systems [6–19]. On the experi-
mental front, many hydrodynamic signatures have been
observed in graphene, both in the Dirac fluid at charge
neutrality[20] and in the Fermi liquid state created by
doping away from charge neutrality [21–24].

Given that two-dimensional (2D) Fermi liquids are
at the focus of current experimental efforts[21–26], it is
timely to revisit theoretical foundations of electron hy-
drodynamics of these systems. Here we argue that our
theoretical understanding is thoroughly incomplete and
is in need of revision. Indeed, it is usually taken for
granted that hydrodynamics in 2D Fermi liquids sets in
at the lengthscales r > lee = v/γ where γ ∼ T 2/TF is the
ee collision rate and v is Fermi velocity. However, generic
large-angle quasiparticle scattering at a thermally broad-
ened 2D Fermi surface has long been known to be inhib-
ited by fermion exclusion, except for the head-on scat-
tering processes [27–29]. As discussed below, the head-
on collisions completely reshape electron hydrodynamics,
creating new dynamical regimes and new lengthscales.

Indeed, as illustrated in Fig.1, it is the head-on col-
lisions that dominate angular relaxation at a 2D Fermi
surface. These processes do lead to rapid momentum ex-
change between particles, however with one caveat: head-
on collisions change particle distribution in an identical
way simultaneously at momenta p and −p, providing
relaxation pathway only for the part of momentum dis-
tribution which is even under Fermi surface inversion,
δf−p = δfp. The odd-parity part δf−p = −δfp does not
relax due to such processes, giving rise to a large number
of soft modes [30]. This peculiar behavior is generic in
2D Fermi liquids at T � TF , so long as the ee collisions
are momentum-conserving.

The new regime, dominated by the head-on collisions

FIG. 1: Types of two-body collisions 1, 2 → 1′, 2′ at a ther-
mally broadened 2D Fermi surface (red rings), which are al-
lowed by momentum and energy conservation and not inhib-
ited by fermion exclusion. Head-on collisions (a) occur at a
rate γ ∼ T 2/TF, with typical recoil ∆θ ∼ 1. Such processes,
however, affect only the even-parity part of momentum dis-
tribution. The odd-parity part, in contrast, relaxes solely due
to small-angle scattering (b). Angular diffusion with a step
∆θ ∼ T/TF � 1 slows down the odd-parity relaxation, re-
ducing the relaxation rate down to γ′ ∼ T 4/T 3

F � γ.

and odd-parity harmonics, occurs at the lengthscales
(and frequencies) in between the conventional ballistic
and hydrodynamic regimes,

lee < r < ξ =
v√
γ′γ

, (1)

where ξ � lee is a new lengthscale originating from slowly
relaxing odd-parity modes. Here the rate γ ∼ T 2/TF de-
scribes head-on processes and even-parity modes, the rate
γ′ � γ describes slow odd-parity modes. The intrinsic
γ′ values due to small-angle ee scattering are estimated
to be as low as [30]

γ′ ∼ (T/TF)2γ � γ. (2)

The conventional ballistic and hydrodynamic regimes oc-
cur at r < lee and r > ξ � lee, respectively. In the bal-
listic regime the system features a standard free-particle
behavior. Likewise, in the hydrodynamic regime trans-
port coefficients assume their conventional values, e.g.
the standard result ν = v2/4γ for kinematic viscosity.
However, at the intermediate scales (1) transport coeffi-
cients acquire a dependence on the wavenumber, becom-
ing scale-dependent with nontrivial scaling dimensions.
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At this point one may ask whether these results con-
tradict the many-body calculations predicting quasipar-
ticle lifetimes scaling as 1

τ ∼ T 2 ln TF

T (or, 1
τ ∼ ε2 ln εF

ε
at zero temperature) showing no indication of the slow
modes[31–34]. This is so because the lifetimes evaluated
by the selfenergy method are dominated by the fastest
decay pathway, with the slow pathways due to long-lived
modes providing a subleading contribution to the decay
rates. A different scheme is therefore required for treat-
ing the slow and fast modes on equal footing.

Here we consider a simple model in which different
harmonics of particle momentum distribution δfp =∑
m δfme

imθ, with the angle θ parameterizing the Fermi
surface, relax at different rates. Microscopic analysis[30]
predicts that (with log accuracy) the even-m harmonics
relax at a constant rate γ ∼ T 2/TF, whereas the odd-m
rates behave as γ′mp with γ′ � γ:

γm even = γ(1− δm,0), γm odd = γ′mp(1− δm,±1). (3)

Zero values for γm=0,±1 reflect particle number and mo-
mentum conservation.

Below we consider values p = 4 and 2 which describe
different regimes of interest. The intrinsic relaxation
mechanism due to ee collisions predicts the odd-m re-
laxation with p = 4 [30]. The case p = 2 is considered for
illustration as well as having in mind that, in real sys-
tems, the very long lifetimes due to intrinsic effects can
be overwhelmed by various extrinsic effects. For instance,
relaxation due to small-angle scattering by a smooth dis-
order potential leads to conventional angular diffusion
described by p = 2. The intrinsic m4 scaling of the odd-
m rates corresponds to angular superdiffusion[30], with a
small γ′, Eq.(2), taking on a role of the angular diffusion
coefficient (see Eqs.(9),(10) below).

It might seem surprising that the modes with high m
values could impact transport properties, since particle
density and current – the two quantities usually probed
in experiments – are described by m = 0,±1 harmonics.
The significance of the high-m modes can be understood
on very general grounds in terms of the Fluctuation-
Dissipation Theorem which mandates strong fluctuations
for slowly-relaxing degrees of freedom. Strong fluctua-
tions, in turn, translate into enhanced scattering for other
degrees of freedom, provided those are coupled to the
slow degrees of freedom.

To clarify in a more quantitative way why different
slow modes are coupled, we consider transport equation,
linearized near the p-isotropic equilibrium state:

(∂t + v∇− Iee)δfp(t,x) = 0. (4)

Couplings between different angular harmonics arise from
the v∇ term. To elucidate these couplings, we transform
Eq.(4) to the δfm basis, δfp =

∑
m δfme

imθ. For plane-
wave modes δfp(t,x) ∼ eikx−iωt, in the δfm basis Eq.(4)
takes the form of a 1D tight-binding model in which the

eigenvalues of Iee and ikv
2 represent the on-site potential

and nearest-neighbor hopping amplitudes:

(γm − iω)δfm =
ikv

2
δfm+1 +

ikv

2
δfm−1 (5)

(without loss of generality we choose k ‖ x). The hopping
terms in Eq.(5) arise since cos θf(θ) Fourier-transforms
to 1

2fm+1+ 1
2fm−1. It is instructive to consider γm values

that vanish on every other site, as in Eq.(3) in the limit
γ′/γ → 0. In this case, one can construct a non-decaying
(ω = 0) Bloch eigenstate described by δfm vanishing on
all the decaying sites with γm 6= 0 but nonzero on the
non-decaying sites where γm = 0, namely

δfm=2s+1 = (−1)s, δfm=2s = 0. (6)

Eq.(6) represents a dark eigenstate which is infinitely
long-lived. Furthermore, the system hosts an entire band
of long-lived near-dark states, with the lifetimes diverg-
ing in proximity of the dark state. Since these states
have nonzero overlaps with the m = ±1 harmonics that
govern electric current, slow decay translates—by the
fluctuation-dissipation theorem—into an enhancement of
current fluctuations and higher conductivity. The latter,
in turn, means reduced dissipation and lower viscosity.

The essential physics here resembles the slow-mode
relaxation mechanism by Mandelshtam and Leontovich,
and Debye, with the m > 2 harmonics playing the role
of bath variables (see, e.g., [35] and references therein).
Since mode coupling in Eq.(5) is proportional to kv, the
impact of soft modes with high m is stronger at larger k.
This can be seen as an underlying reason for transport
coefficients such as conductivity and viscosity becoming
scale-dependent.

Turning to evaluating transport coefficients, we con-
sider flows induced by an in-plane electric field varying
as E(x) = Ek coskx. Small deviations from equilibrium
are described by a linearized kinetic equation

(∂t + v∇x − Iee)δfp(t,x) = −eE(x)∇pf
(0)
p , (7)

where f
(0)
p is the equilibrium distribution. The perturbed

distribution δfp is nonzero near the Fermi surface. Below
we will focus on the shear flows, described by Ek ⊥ k.

Since the even and odd parts of the distribution
δfp(t,x) relax at very different rates, we employ an adia-
batic approximation in order to “integrate out” the even-
parity part and derive a closed-form equation for the odd-
parity part. We first note that the only term in Eq.(7)
that alters parity, v∇x, transforms functions of odd par-
ity to those of even parity, and vice versa. We can there-
fore decompose the distribution into a sum of an odd
and an even contribution, δfp = δf+p + δf−p , and write a
system of coupled equations for these quantities:

(∂t − I+)δf+p (t,x) + v∇xδf
−
p (t,x) = 0, (8)

(∂t − I−)δf−p (t,x) + v∇xδf
+
p (t,x) = −eE(x)∇pf

(0)
p
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where I± denote the even-m and odd-m parts of Iee.
Since I+ = −γ, the first equation yields a relation
δf+p (t,x) = − 1

γv∇xδf
−
p (t,x), valid at low frequencies

ω � γ, i.e. at the lengthscales r � lee. Plugging it
in the second equation and interpreting mp in I− as the
angle diffusion operator,

I− =
∑
m odd

−γm |m〉 〈m| ≈ −γ′(i∂θ)p, (9)

yields a closed-form relation for δf−p . This relation will
serve as a master equation for the new transport regime:[
∂t −D(v̂∇x)2 + γ′(i∂θ)

p
]
δf−p (t,x) = −eE(x)∇pf

(0)
p ,
(10)

where we defined D = v2/γ. Eq.(10) describes “tomo-
graphic dynamics”: fast one-dimensional spatial diffusion
along unchanging direction of velocity v accompanied by
a slow angle diffusion that gradually randomizes the ori-
entation of v.

In the above derivation we ignored the m = 0 zero
mode of I+ since particle density remains unperturbed
in the shear flows created by transverse fields Ek ⊥ k.
An extension of Eq.(10) accounting for this mode will
be discussed elsewhere. Zero modes of I− with m = ±1
can be accounted for by replacing in Eqs.(9),(10) ∂2θ →
∂2θ − 1. However, this change only matters in the long-
wavelength hydrodynamic regime, at r >∼ ξ, and does not
impact the behavior in the tomographic regime, Eq.(1).
We therefore suppress such terms for the time being.

A perturbed momentum distribution can be obtained
by inverting transport operator in Eq.(10). Passing to
Fourier representation δfp(t,x) = δfpe

−iωt+ikx we write
a formal operator solution of Eq.(10) as

δfp = − 1

L̂− iω
eE∇pf

(0)
p , L̂ = D(v̂k)2 + γ′(i∂θ)

p.

(11)

Writing E∇pf
(0)
p = Ev

∂f(0)
p

∂ε and noting that −∂f
(0)
p

∂ε =

βf
(0)
p (1−f (0)p ) ≈ δ(ε−µ), confirms that the resulting per-

turbation indeed peaks at the Fermi level. Shear flows
arise when Ek =

∫
d2xe−ikxE(x) is transverse to k; with-

out loss of generality here we take Ek ‖ ŷ, k ‖ x̂.
The transport operator L̂ acts on the Fermi surface pa-

rameterized by the angle θ; it is a sum of two noncommut-
ing contributions, (v̂k)2 = k2 cos2 θ and (i∂θ)

p. One is
diagonal in the θ-representation, the other is diagonal in
the δfm representation. Diagonalizing L̂, therefore, rep-
resents a nontrivial task. Assuming that the eigenfunc-
tions and eigenvalues of L̂, defined by L̂ψn(θ) = λnψn(θ),
are known, we can write the inverse as〈

θ
∣∣∣ 1

L̂− iω

∣∣∣θ′〉 =
∑
n

ψ̄n(θ)ψn(θ′)

λn − iω
. (12)

Using Eq.(12) we proceed to evaluate current jy,k =
evν0

∮
dθ
2π sin θδf(θ), where ν0 is the density of states at

εF . Plugging the angle dependence Ev = Ev sin θ gives

jk = e2v2ν0Ek

∮
dθ

2π

∮
dθ′

2π
sin θ

〈
θ
∣∣∣ 1

L̂− iω

∣∣∣θ′〉 sin θ′.

(13)
We can rewrite this relation as jk = σ(k, ω)Ek by intro-
ducing a scale dependent conductivity

σ(k, ω) = e2v2ν0
∑
n

| 〈sin θ|ψn(θ)〉 |2

λn − iω
. (14)

The matrix elements 〈sin θ|ψn(θ)〉 quickly decrease with
n, allowing to estimate the sum in Eq.(14) by retaining
only the n = 0 term. The lowest eigenvalue can be found
by the variational method as

λ0 = min
〈
ψ|L̂|ψ

〉
∼ min

(
Dk2δθ2 +

γ′

δθp

)
. (15)

Here the trial state is normalized, 〈ψ|ψ〉 = 1, and is lo-
calized within the region of width δθ near the minima of
cos2 θ, i.e. around θ = ±π/2. The estimate in Eq.(15)

gives the width δθ ∼ (γ′/Dk2)
1

2+p and the value

λ0 ∼ Dk2
(

γ′

Dk2

) 2
2+p

. (16)

Plugging these values in Eq.(14) and setting ω = 0, gives
a scale-dependent DC conductivity

σ(k) ∼ e2v2ν0
Dk2

(
Dk2

γ′

) 1
2+p

∼ k−2+
2

2+p . (17)

Our variational estimate is valid provided δθ � 1, which
translates into the condition k > (γ′/D)1/2 = 1/ξ
identical to the upper limit in Eq.(1) that marks the
tomographic-hydrodynamic crossover.

Viscosity scale dependence can now be inferred by

comparing Eq.(17) to the conductivity σ(k) = n2e2

ηk2 ob-

tained from the Stokes equation −η∇2v = neE, giving

η(k) ∼ k−
2

2+p . (18)

Eq.(18) predicts viscosity growing vs. lengthscale, in
agreement with the qualitative picture discussed above.
The scaling exponents are −1/3 and −1/2 for the cases
p = 4 and 2, respectively.

These results are valid for wavenumbers in the range
l−1ee > k > ξ−1, see Eq.(1). Larger values k > l−1ee cor-
respond to ballistic free-particle transport; smaller val-
ues k < ξ−1 correspond to hydrodynamic transport. At
kξ ∼ 1 our k-dependent viscosity values ν(k) match the
standard hydrodynamic value ηhydro = nmv2/4γ. At
shorter lengthscales, kξ > 1, the viscosity is reduced com-

pared to ηhydro by a factor (kξ)
2

2+p . The reduction in η

is maximal at k ∼ l−1ee , where η(k)/ηhydro ∼ (γ′/γ)
1

2+p .
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FIG. 2: Current density in a long strip of width w induced
by a uniform DC electric field, Eq.(26). Inset shows flow
schematic. The flow profile is different for the conventional
viscous and tomographic regimes, showing signatures that de-
pend on the angular relaxation dynamics type, parameterized
by p = 4 and 2. A semicircle is shown as a guide to the eye.

This scale dependence implies that, somewhat unexpect-
edly, the system behavior, which is liquid-like at small
distances, becomes more gaseous at larger distances.

Next, we demonstrate that scale dependence of σ and
η manifests itself in a characteristic current distribu-
tion across sample crosssection, which is distinct from
the familiar parabolic distribution for conventional vis-
cous flows. We analyze flow in a strip 0 < x < w,
−∞ < y <∞ with momentum relaxation at the bound-
aries x = 0, w. To simplify the geometry, we consider
an auxiliary problem in an infinite (x, y) plane equipped
with an array of lines, spaced by w, where current relax-
ation may occur. Current induced by an E field, which
is parallel to the lines, is given by

j(x) =

∫
dx′σ(x− x′) [E − α

∑
ij(xi)δ(x− xi)] , (19)

with xi = wi. Here α is a parameter that is a property
of the lines, representing strip boundary, and σ(x−x′) =∫
dk
2π e

ik(x−x′)σ(k). The limit α→∞ is taken at the end
of calculation to mimic diffuse boundary conditions.

Current distribution for this problem can be obtained
by the Fourier method, by writing

j(x) =
∑
n

jne
knx, kn =

2π

w
n, n = 0,±1,±2... (20)

Plugging this expression in Eq.(19) and Fourier trans-
forming, we have a system of coupled equations for jn:

ρnjn = Eδn,0 − α̃
∑
n′

jn′ , ρn =
1

σ(kn)
, (21)

where we defined α̃ = α
w . These equations can be solved

by separating the n = 0 and n 6= 0 harmonics,

(ρ0+α̃)j0 = E−α̃
∑′

jn′ , jn = σ(kn)
(
−α̃j0 − α̃

∑′
jn′
)
.

(22)

where we introduced a shorthand notation
∑′

=
∑
n′ 6=0.

Taking a sum over all n 6= 0 harmonics yields a relation

(1 + α̃G)
∑′

jn = −α̃Gj0, G =
∑′

σ(kn). (23)

Expressing
∑′

jm′ and combining with the first equation
in Eq.(22), we obtain(

ρ0 +
α̃

1 + α̃G

)
j0 = E (24)

For the case when there are no ohmic losses, ρ0 = 0, and
in the limit α→∞, this relation simplifies to

j0 = E
∑′

σ(kn). (25)

The distribution of current within the strip then is

j(x) = j0

(
1−

∑′
σ(kn)eiknx∑′
σ(kn)

)
. (26)

For conventional scale-independent viscosity, plugging
σ(k) = 1

νk2 , this expression, after a little algebra, gives
the familiar parabolic profile j(x) ∼ x(w− x). For scale-

dependent viscosity ν(k) ∼ k−
2

2+p it yields a distribution
closely resembling the fractional-power profile

j(0 < x < w) ∼ x
2

2+p (w − x)
2

2+p . (27)

The resulting current profiles are illustrated in Fig.2 for
several cases of interest. We see that the k dependence
of σ and η has a strong impact on the current profile,
providing a directly measurable signature of the tomo-
graphic regime.

This analysis points to several other interesting aspects
of tomographic dynamics. First, the system conductance
dependence vs. strip width can be obtained by noting
that the sum in Eq.(25) converges rapidly, and is well
approximated by the first term, m = 1. This predicts
scaling for the conductance of the form

G(w) ∼ w3− 2
2+p , (28)

a dependence that lies in between the seminal Poisseuille-
Gurzhi scaling w3 for the conventional viscous regime[1]
and w2 scaling for the ballistic transport regime[36].

Second, velocities of current-carrying electrons are
tightly collimated along the strip axis, spanning angles

in the range estimated above, δθk1 = (ξk1)−
2

2+p � 1.
This is in stark contrast to conventional viscous flows,
where velocities are nearly isotropic. Strong velocity col-
limation tunable by the ee collision rate is a surprising
behavior, which, along with the peculiar fractional-power
conductance scaling, provides a clear signature of the to-
mographic regime.
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