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The study of quantum phase transitions requires the preparation of a many-body system near its ground state,
a challenging task for many experimental systems. The measurement of quench dynamics, on the other hand, is
now a routine practice in most cold atom platforms. Here we show that quintessential ingredients of quantum
phase transitions can be probed directly with quench dynamics in integrable and nearly integrable systems. As
a paradigmatic example, we study global quench dynamics in a transverse-field Ising model with either short-
range or long-range interactions. When the model is integrable, we discover a new dynamical critical point
(DCP) with a nonanalytic signature in the short-range correlators. The location of the dynamical critical point
matches that of the quantum critical point and can be identified using a finite-time scaling method. We extend
this scaling picture to systems near integrability and demonstrate the continued existence of a dynamical critical
point detectable at prethermal time scales. We quantify the difference in the locations of the dynamical and
quantum critical points away from (but near) integrability. Thus, we demonstrate that this method can be used
to approximately locate the quantum critical point near integrability. The scaling method is also relevant to
experiments with finite time and system size, and our predictions are testable in near-term experiments with
trapped ions and Rydberg atoms.

Introduction.—Experimental advances in isolating and
controlling nonequilibrium quantum systems have brought
within reach answers to many fundamental questions, includ-
ing those related to thermalization, prethermalization, and
many-body localization [1–6]. The exquisite control of com-
plex quantum systems has become commonplace as a result of
progress in various platforms, such as trapped ions [7, 8], ul-
tracold atoms [9, 10], nitrogen-vacancy centers [11], Rydberg
atoms [12], and others.

Among other interesting topics in nonequilibrium quantum
many-body physics, phase transitions that emerge in the dy-
namics of isolated quantum systems have attracted significant
theoretical and experimental interest [13–20]. There are two
known types of dynamical phase transitions: (i) when a global
order parameter (such as the Loschmidt echo) shows an abrupt
change as a function of evolution time, or (ii) when a local
order parameter measured after a sufficiently long time be-
comes nonanalytic as a function of some Hamiltonian param-
eter [14]. This latter type of dynamical phase transition is
closely related to quantum phase transitions; the only differ-
ence is that the order parameter is measured in the quenched
state instead of the ground state. It is thus natural to ask how
this dynamical phase transition is related to a quantum phase
transition. While difficult to answer, this question is not only
of fundamental importance, but also motivates the idea of us-
ing dynamics to study quantum phase transitions. In fact, in
many of the above-mentioned experimental platforms, cool-
ing a system to its ground state can be a formidable task while
performing a quench experiment is now a routine practice.

In this Letter, we first establish a strong connection be-
tween the quantum critical point and a new dynamical criti-
cal point (DCP) in a general class of integrable models, using
the transverse-field Ising model (TFIM) as a paradigm. We

show analytically that these critical points are identical and
expect such behavior to generalize to other systems consist-
ing of noninteracting particles [21]. This DCP has a nonan-
alytic signature in the long-time values of short-range, two-
point correlation functions. Much of the previous work on the
quench dynamics of the TFIM has focused on the behavior of
long-range correlations [14, 18, 22–25], a common practice in
studying equilibrium phase transitions. However, these corre-
lations vanish in the thermodynamic limit for all nonzero field
values due to the absence of long-range order at long time.
Thus short-range correlations, often ignored due to the domi-
nance of long-wavelength physics at low temperature, are im-
portant in identifying dynamical criticality and revealing its
connections to quantum phase transitions.

Second, we show that analogous to the finite-size scaling
analysis for identifying quantum critical points, one can per-
form a finite-time scaling analysis for obtaining the DCP. In-
tuitively, this can be understood because the evolution time
controls the effective system size seen by short-range correla-
tions as a result of emergent light cones. This finite-time scal-
ing analysis is particularly favorable for quantum simulation
experiments, as one does not need to create systems of differ-
ent sizes or wait for a time much longer than the coherence
time, and thus, allows for near-term experimental demonstra-
tion [12, 17].

Finally, we generalize our findings to systems that are non-
integrable by adding weak interactions. We show that the
finite-time scaling predicts a DCP in the prethermal time
scale. In general, the dynamical critical point will no longer
coincide with the quantum critical point away from integra-
bility. But, as shown by our analysis of the TFIM with next-
nearest-neighbor and power-law decaying interactions, we ex-
pect the two transition points to be close to each other when in-
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teractions are weak. As perturbation theory may not work for
finding quantum critical points of weakly interacting systems,
our findings provide an alternative and experimental way of
locating such critical points.

We point out that some earlier works have considered sim-
ilar ideas of studying quantum criticality via quench dynam-
ics. For example, Ref. [26] studies the appearance of non-
analytic signatures in the periodically kicked Ising model,
Refs. [21], and [27] discuss signatures in the quench dynam-
ics for noninteracting topological phase transitions, Ref. [28]
studies nonanalytic behavior in longitudinal magnetization,
Ref. [29] studies energy absorption and Ref. [30] uses out-
of-time-order correlators (OTOCs) to identify quantum phase
transitions. However, our approach offers three unique ad-
vantages: (i) The short-range correlations are easy to measure
experimentally, especially compared to the OTOC. (ii) Our
approach is not restricted to exactly integrable systems. (iii)
The finite-time scaling analysis we introduce provides a prac-
tical method to locate the dynamical critical point.

Model.—We consider two models for the quench Hamil-
tonian of L spins in one dimension: a transverse-field Ising
model with next-nearest-neighbor or long-range interactions,

HNNN = −J
∑
〈i,j〉

σxi σ
x
j − J∆

∑
〈〈i,j〉〉

σxi σ
x
j +B

∑
i

σzi , (1)

HLR = −
∑
i<j

J
(α)
ij σxi σ

x
j +B

∑
i

σzi , (2)

where {σx,y,zi } denote the Pauli matrices and 〈· · · 〉 and
〈〈· · · 〉〉 denote nearest and next-nearest neighbors, respec-
tively. We will use periodic boundary conditions to ensure
translation invariance unless otherwise noted. In the long-
range Hamiltonian, the Ising coupling is defined as J (α)

ij =

J
[

1
|i−j|α + 1

|L−(i−j)|α
]
, which accounts for periodic bound-

ary conditions [31]. We restrict to case of ferromagnetic inter-
actions with J and ∆ > 0.

The quench and measurement protocol is shown schemat-
ically in Fig. 1(a). We initialize the system in a product
state with all spins polarized in the Ising direction, |ψin〉 =
|→ · · · →〉. This state is one of two degenerate ground states
when B = 0. We focus on the dynamics under the quench
Hamiltonian [see Eqs. (1) and (2)] of the nearest-neighbor,
equal-time correlation function defined as

G(t) =
1

L

∑
〈i,j〉

〈σxi (t)σxj (t)〉in, (3)

where 〈· · · 〉in indicates the expectation value with respect to
the initial state |ψin〉 defined above, and the operators are writ-
ten in the Heisenberg picture, σxi (t) = eiHtσxi e

−iHt. We note
that the dynamics of two-point correlators at longer distances
independent of the system size (e.g. 〈σxi σxi+2〉) will be similar
to G(t). However, calculating such longer range correlations
would require a more complicated analytical treatment.

Results at the integrable point.—Consider first the nearest-
neighbor TFIM [∆ = 0 in Eq. (1) or α = ∞ in Eq. (2)]. In

FIG. 1. (a) Schematic picture of the quench. We evolve the initial
state |ψin〉, which consists of all spins polarized in the Ising direc-
tion, for a time t under the Hamiltonian defined in Eq. (1) (shown)
or Eq. (2). Then we measure the nearest-neighbor correlator G(t)
defined in Eq. (3). (b) The dependence of G∞

av on B as given by
Eq. (5).

this case, the Hamiltonian is integrable and can be mapped
to free fermions via a Jordan-Wigner transformation with the
boundary condition determined by the particle number par-
ity [32]. The quasiparticle dispersion is given by ωq =

2
√
B2 − 2BJ cos q + J2, where q denotes momentum, and

the Hamiltonian becomes H =
∑
q ωqγ

†
qγq , where γq are

the annihilation operators for the Bogoliubov quasiparticles.
The time evolution is governed by a set of conserved densi-
ties of these quasiparticles, Iq = γ†qγq . The ground state of
this model exhibits a second-order phase transition with the
critical point at B = Bgs

c ≡ J .
We calculate the time-averaged correlator Gav(t) ≡

1
t

∫ t
0
dt̃G(t̃) to be [22, 32]

Gav(t) =
1

L

∑
q

8B2

ω2
q

[(
J

B
− cos q

)2

+ j0 (2ωqt) sin2 q

]
,

(4)
where j0(z) = sin (z) /z is a spherical Bessel function of the
first kind. The second term in Eq. (4) decays at long times:
j0 (2ωqt)→ 0 as t→∞ (except when ωq = 0, in which case
it is constant ∝ 1/L). This means that the first term in Eq. (4)
is the long-time stationary value. Taking the thermodynamic
limit, we obtain an analytic expression for Gav(t),

G∞av ≡ lim
L→∞
t→∞

1

t

t∫
0

dt̃G(t̃) =

{
1− B2

2J2 if B ≤ J
1
2 if B ≥ J, (5)

which has a nonanalyticity at B = Bdy
c ≡ J . We refer to this

nonanalytic point as a dynamical critical point (DCP). Note
that the dynamical and ground state critical points are iden-
tical, Bdy

c = Bgs
c . This is because the nonanalyticity can be

traced to the appearance of 1/ω2
q in the expression for Gav(t)

[see Eq. (4)], which has a pole at B = Bgs
c . In Fig. 1(b), we

plot the long-time value of the correlator G∞av [Eq. (5)], which
exhibits a kink at B = Bdy

c . Note that the expression for
G∞av is identical to that obtained from the Generalized Gibbs
Ensemble (GGE) [33] for the TFIM.
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FIG. 2. Finite-time scaling for the integrable case. The first deriva-
tive of the correlator, ∂

∂B
Gav(t), exhibits a sharper jump across the

transition (B = Bdy
c = J) at later times. The curves are obtained

by differentiating Eq. (4) with a system size L = 100 [32]. The
curves at different times cross at the same point, thus revealing a
DCP. The dotted line in black indicates the expected discontinuity
in the derivative in the thermodynamic limit (L → ∞) and at long
times (Jt → ∞). (Inset) We extract the time dependence by per-
forming a scaling collapse after rescaling the magnetic field B by t.
The scaling function near the critical point is linear, and is shown as
a dashed red line.

The kink at the DCP is obtained after taking two limits in
either order: (i) the infinite-time limit and (ii) the thermody-
namic limit. In any realistic experiment, one can only mea-
sure Gav(t) at a finite time and a finite system size. In this
case, Gav(t) is a smooth function of B, but we can never-
theless locate the DCP in the following way: We obtain the
time-dependent derivative of Gav(t) with respect to B, i.e.
∂BGav(t) (see [32] for the explicit expression), and plot it in
Fig. 2. We find the curves at different times cross at the same
point up to a small correction ∝ 1

L , thus revealing a DCP.
In fact, all the curves can be made to collapse into a single
curve (shown in the inset) by rescaling the field B by Jt. The
expression for ∂BGav(t) near the DCP takes the form of a
universal scaling function, ∂BGav(t) = 1

J f((B −Bdy
c )t). To

lowest order in the distance from the critical point (given by
ε = B − Bdy

c ), the scaling function is f(εt) = − 1
2 + εt [32].

Note that this finite-time scaling function is very similar to
the finite-size scaling function of the long-time correlator near
the critical point, with t playing the role of L/(3J) [32]. The
finite-time scaling analysis thus allows us to locate the posi-
tion of the DCP, and in this (integrable) case, also the quantum
critical point.

Let us discuss the generality of this result for different ini-
tial states. For an arbitrary initial state, G∞av is given by

G∞av,arbitrary =
1

L

∑
q

2(J −B cos q)

ωq

[
1− 2 〈Iq〉in

]
, (6)

where 〈Iq〉in is the expectation value of the conserved quasi-
particle densities in the initial state. It is clear from this ex-
pression that the nonanalyticity which results from a gapless

ωq will survive for arbitrary initial states unless the form of[
1− 2 〈Iq〉in

]
cancels off the 1/ωq singularity at q = 0. A

generic pure initial state is thus expected to lead to the same
dynamical critical behavior. In the Supplemental Material, we
show explicitly the robustness of the dynamical criticality to
perturbations of the initial state, particularly under realistic
experimental conditions [32]. Interestingly, a thermal initial
state given by the density matrix ρth = e−βH/ tr

[
e−βH

]
is an exception. This is because in this case, 〈Iq〉in =

tr(ρthIq) = 1
2

[
1− tanh

(
βωq
2

)]
≈ 1

2

(
1− β

2ωq

)
when

ωq → 0 and thusG∞av becomes an analytic function ofB. This
is consistent with the well-known fact that the 1D nearest-
neighbor TFIM does not have a thermal phase transition. We
note that this dynamical criticality is present in other nonin-
teracting Hamiltonians which have single-particle dispersion
∼ ωq and exhibit phase transitions.

Results away from integrability.—Now, let us consider the
TFIM with either an additional next-nearest-neighbor interac-
tion [∆ 6= 0 in Eq. (1)] or long-range interactions [any finite α
in Eq. (2)]. Assuming the Eigenstate Thermalization Hypoth-
esis (ETH) [3] holds, we expect local observables, including
G(t), to thermalize at sufficiently long times. For any finite
value of ∆ or α > 2, it has been established that the TFIM
does not exhibit a thermal phase transition [34, 35]. Thus,
once the system fully thermalizes, any measured observable
has to be analytic and thus, it should no longer have a DCP.
(The situation with α < 2 is beyond the scope of this Letter
due to the strong effects of long-range interactions that could
break ETH [14].)

However, as recently shown by Refs. [18, 19], it is possible
to still observe a dynamical phase transition when local ob-
servables have not yet thermalized but instead have reached
prethermal values. This is the case here when ∆ is small or
α is large, so that the Hamiltonian is nearly integrable and
prethermalization is expected to occur [36, 37]. The DCP in
the prethermal regime is also relevant for experiments in the
near future, as the thermalization timescale is likely to be far
beyond the experimental coherence time [8, 9, 38].

We now show that our finite-time scaling method can also
reveal DCPs in the prethermal regime of nearly integrable
systems. We calculate dynamics of Eq. (1) with ∆ 6= 0
and Eq. (2) with finite α numerically due to the lack of an-
alytic solutions. Using a split-operator decomposition (using
fourth-order Suzuki-Trotter expansion) coupled with a Walsh-
Hadamard transform, we calculate dynamics for up to L = 25
spins (see [32] for technical details). In Figs. 3(a) and (b)
we plot the time dependence of the derivative of Gav(t) for
∆ = 0.1 and α = 6 respectively. Remarkably, the curves at
different times still cross at one point, which we identify as
the DCP Bdy

c . We note that this DCP survives at intermedi-
ate time scales as a consequence of prethermalization. These
curves will also collapse almost perfectly on top of each other
using a scaling function ∂BGav(t) = 1

J f̃
(
(B −Bdy

c )t
)

[32].
While the scaling function depends on the model, we expect
the variables of the scaling function are universal and inde-
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pendent of microscopic details.
In the integrable TFIM, we showed that the DCP Bdy

c coin-
cides with the ground-state critical point Bgs

c . It is natural to
ask whether this is still the case for the above-calculated mod-
els near integrability. To locate the quantum critical point,
we compute the Binder cumulant [39], Ugs

4 = 1 − 〈M4〉gs
3〈M2〉2gs

(where M = 1
L

∑
i σ

x
i and 〈· · · 〉gs denotes the ground-state

expectation value) using a DMRG algorithm for a system with
open boundary conditions and sizes ranging from L = 30 to
L = 140. We identify the quantum critical point using a finite-
size scaling method as shown in Figs. 3(c) and (d). It is found
that Bdy

c is close, but not identical, to Bgs
c at both ∆ = 0.1

and α = 6.
While we cannot make a conclusive statement about

whether Bdy
c agrees with Bgs

c in the thermodynamic limit
based on finite-size numerical calculations, we argue thatBdy

c

and Bgs
c should in general be different but close to each other

when near integrability. To support this argument, we perform
a self-consistent mean-field calculation [40] for Eq. (1) with
∆ = 0.1 to identify both Bdy

c and Bgs
c in the thermodynamic

limit [32]. The next-nearest-neighbor spin interaction trans-
lates to a perturbative two-particle interaction of the Jordan-
Wigner fermions. The essence of the self-consistent calcu-
lation is to approximate this interaction by effective single-
particle hoppings and on-site energies. This makes the Hamil-
tonian noninteracting, with the quench dynamics given by an
effective GGE. The parameters of this effective Hamiltonian
must be determined self-consistently from the expectation val-
ues of different correlation functions. These expectation val-
ues may be considered either in the ground state or the ef-
fective GGE corresponding to the quench from some initial
state. While the former determines the quantum critical point
Bgs
c [40], we claim that the latter captures the DCP Bdy

c .
Therefore, it is natural to expect a difference in the locations
of the dynamical and quantum critical points.

The self-consistent mean-field calculation should be
asymptotically exact as ∆ → 0. We find that to first order
in ∆, Bdy

c ≈ J
(
1 + 3

2∆
)

and Bgs
c ≈ J

(
1 + 16

3π∆
)

[32].
For ∆ = 0.1, these predict Bdy

c ≈ 1.15 and Bgs
c ≈ 1.168,

agreeing very well with numerics in Figs. 3(a) and (c). We
have further confirmed the accuracy of these predictions for
∆ up to 0.3 [32]. For the larger values of ∆, it is clear that
Bdy
c 6= Bgs

c , but they are close in magnitude when ∆ ≈ 0.
Thus, near integrability, the dynamical critical field can be
used to approximately locate the quantum critical point.

Discussion.—Our results are relevant to experiments in
trapped ions [17] and Rydberg atoms [12], where dynamics of
the TFIM can be readily probed. As an example, we numer-
ically obtain the dynamics for the α = 6 TFIM, which mod-
els Rydberg atoms interacting via van der Waals type long-
range interactions [41]. We find that the numerically obtained
DCP Bdy

c ≈ 1.028J shown in Fig. 3(b) is very close to the
ground-state critical point Bgs

c ≈ 1.03J obtained from finite-
size scaling shown in Fig. 3(d). We emphasize that the DCP is
identified by our finite-time scaling method for a system size
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FIG. 3. Comparison between the finite-time scaling of the time-
averaged nearest-neighbor correlator Gav(t) and the ground-state
Binder cumulant Ugs

4 . The first column [panels (a) and (c)] corre-
sponds to the TFIM with next-nearest-neighbor interaction ∆ = 0.1
[Eq. (1)], while the second column [panels (b) and (d)] corresponds
to the TFIM with long-range interaction α = 6 [Eq. (2)]. The finite-
time scaling of the quench dynamics is shown in the first row, and
the finite-size scaling for the ground state is shown in the second
row. The DCPs (Bdy

c ) identified in (a) and (b) using finite-time scal-
ing are close but different from the locations of the quantum critical
points (Bgs

c ) identified in (c) and (d). The ground-state simulations
were done using a DMRG algorithm with bond dimension χ = 32.

of only 25 spins and an evolution time of only 9/J , which
are well within the current experimental record for the sys-
tem size and coherence time [12]. As a result, we believe our
method is a paradigmatic example of what Near-term Inter-
mediate Scale Quantum (NISQ) simulators can do: learn new
physics that cannot be obtained by classical simulation, yet
without the need for a very large number of qubits, very low
error, and very long coherence times.

Our work opens up several interesting questions for fu-
ture consideration: (i) How should one classify the observed
DCP? We note that the DCP identified using G(t) as an “or-
der parameter” does not represent a conventional symmetry-
breaking phase transition, because for both B < Bdy

c and
B > Bdy

c , the quenched state does not spontaneously break
the Ising symmetry and become ferromagnetically ordered.
(ii) Is finite-time scaling a general method for identifying
DCPs? We believe that for generic, short-range interacting
systems, finite-time scaling serves the purpose of finite-size
scaling for finding the quantum critical point due to the emer-
gence of linear light cones [42]. However, when interac-
tions become long-range, the linear light cone may no longer
exist [43, 44] and it remains unclear when the finite-time
scaling method fails. (iii) Could the link between dynami-
cal and quantum critical points established here be general-
ized to other integrable and nearly integrable systems, such
as systems solvable by Bethe ansatz or many-body localized
systems? Here the link is provided by the single-particle
spectrum that governs both equilibrium and nonequilibrium
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physics, but what happens when the single-particle spectrum
is less relevant? Is there evidence of this dynamical critical-
ity in nonintegrable models? (iv) Could there be similar links
between dynamical phase transitions and phase transitions in
excited eigenstates? This is particularly relevant in many-
body localized systems [45]. (v) Can the prethermal DCP be
predicted using other theoretical methods such as the kinetic
equations using time-dependent GGEs [46, 47] or Keldysh
field theory?
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[14] B. Žunkovič, M. Heyl, M. Knap, and A. Silva, Phys. Rev. Lett.
120, 130601 (2018).

[15] M. Heyl, Rep. Prog. Phys. 81, 054001 (2018).
[16] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges,

C. Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos,
Phys. Rev. Lett. 119, 080501 (2017).

[17] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker,
H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, Na-
ture 551, 601 EP (2017).

[18] J. C. Halimeh, V. Zauner-Stauber, I. P. McCulloch, I. de Vega,
U. Schollwöck, and M. Kastner, Phys. Rev. B 95, 024302
(2017).

[19] J. C. Halimeh and V. Zauner-Stauber, Phys. Rev. B 96 (2017).
[20] I. Homrighausen, N. O. Abeling, V. Zauner-Stauber, and J. C.

Halimeh, Phys. Rev. B 96 (2017).
[21] S. Roy, R. Moessner, and A. Das, Phys. Rev. B 95, 041105

(2017).
[22] P. Calabrese, F. H. L. Essler, and M. Fagotti, Phys. Rev. Lett.

106, 227203 (2011).
[23] P. Calabrese, F. H. L. Essler, and M. Fagotti, J. Stat. Mech.

Theory Exp. 2012, P07016 (2012).
[24] P. Calabrese, F. H. L. Essler, and M. Fagotti, J. Stat. Mech.

Theory Exp. 2012, P07022 (2012).
[25] M. Karl, H. Cakir, J. C. Halimeh, M. K. Oberthaler, M. Kastner,

and T. Gasenzer, Phys. Rev. E 96, 022110 (2017).
[26] T. Prosen, Prog. Theor. Phys. Supplement 139, 191 (2000).
[27] M. Tarnowski, F. Nur Ünal, N. Fläschner, B. S.

Rem, A. Eckardt, K. Sengstock, and C. Weitenberg,
arXiv:1709.01046.

[28] Y. Li, M. Huo, and Z. Song, Phys. Rev. B 80, 054404 (2009).
[29] S. Bhattacharyya, S. Dasgupta, and A. Das, Scientific Reports

5, 16490 (2015).
[30] M. Heyl, F. Pollmann, and B. Dóra, Phys. Rev. Lett. 121,

016801 (2018).
[31] A. W. Sandvik, Phys. Rev. E 68, 056701 (2003).
[32] See Supplemental Material, which includes Refs. [50–54], for

additional details.
[33] L. Vidmar and M. Rigol, J. Stat. Mech. Theory Exp. 6, 064007

(2016).
[34] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge

University Press, 2011).
[35] A. Dutta and J. K. Bhattacharjee, Phys. Rev. B 64, 184106

(2001).
[36] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, J. Phys. B

51, 112001 (2018).
[37] T. Langen, T. Gasenzer, and J. Schmiedmayer, J. Stat. Mech.

Theory Exp. 2016, 064009 (2016).
[38] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,

M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J. Schmied-
mayer, Science 337, 1318 (2012).

[39] K. Binder, Z. Phys. B 43, 119 (1981).
[40] P. Sen and B. K. Chakrabarti, Phys. Rev. B 43, 13559 (1991).
[41] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys.

82, 2313 (2010).
[42] E. H. Lieb and D. W. Robinson, Comm. Math. Phys. 28, 251

(1972).
[43] M. Foss-Feig, Z.-X. Gong, C. W. Clark, and A. V. Gorshkov,

http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1088/0305-4470/32/7/007
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevE.90.052105
http://dx.doi.org/10.1103/PhysRevE.90.052105
http://dx.doi.org/10.1103/PhysRevX.8.021026
http://dx.doi.org/10.1038/nature13450
http://dx.doi.org/10.1126/sciadv.1700672
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1038/nature21426
http://dx.doi.org/10.1038/nature21426
http://dx.doi.org/ 10.1038/nature24622
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/ 10.1103/PhysRevLett.120.130601
http://dx.doi.org/ 10.1103/PhysRevLett.120.130601
http://dx.doi.org/10.1088/1361-6633/aaaf9a
http://dx.doi.org/10.1103/PhysRevLett.119.080501
http://dx.doi.org/10.1103/PhysRevB.95.024302
http://dx.doi.org/10.1103/PhysRevB.95.024302
http://dx.doi.org/10.1103/PhysRevB.96.134427
http://dx.doi.org/10.1103/PhysRevB.96.104436
http://dx.doi.org/10.1103/PhysRevB.95.041105
http://dx.doi.org/10.1103/PhysRevB.95.041105
http://dx.doi.org/10.1103/PhysRevLett.106.227203
http://dx.doi.org/10.1103/PhysRevLett.106.227203
http://stacks.iop.org/1742-5468/2012/i=07/a=P07016
http://stacks.iop.org/1742-5468/2012/i=07/a=P07016
http://stacks.iop.org/1742-5468/2012/i=07/a=P07022
http://stacks.iop.org/1742-5468/2012/i=07/a=P07022
http://dx.doi.org/ 10.1103/PhysRevE.96.022110
http://dx.doi.org/10.1143/PTPS.139.191
http://arxiv.org/abs/1709.01046
http://dx.doi.org/ 10.1103/PhysRevB.80.054404
https://doi.org/10.1038/srep16490
https://doi.org/10.1038/srep16490
http://dx.doi.org/10.1103/PhysRevLett.121.016801
http://dx.doi.org/10.1103/PhysRevLett.121.016801
http://dx.doi.org/10.1103/PhysRevE.68.056701
http://dx.doi.org/10.1088/1742-5468/2016/06/064007
http://dx.doi.org/10.1088/1742-5468/2016/06/064007
http://dx.doi.org/10.1017/CBO9780511973765
http://dx.doi.org/10.1103/PhysRevB.64.184106
http://dx.doi.org/10.1103/PhysRevB.64.184106
http://stacks.iop.org/0953-4075/51/i=11/a=112001
http://stacks.iop.org/0953-4075/51/i=11/a=112001
http://stacks.iop.org/1742-5468/2016/i=6/a=064009
http://stacks.iop.org/1742-5468/2016/i=6/a=064009
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1103/PhysRevB.43.13559
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/RevModPhys.82.2313
https://projecteuclid.org:443/euclid.cmp/1103858407
https://projecteuclid.org:443/euclid.cmp/1103858407


6

Phys. Rev. Lett. 114, 157201 (2015).
[44] Z. Eldredge, Z.-X. Gong, J. T. Young, A. H. Moosavian,

M. Foss-Feig, and A. V. Gorshkov, Phys. Rev. Lett. 119,
170503 (2017).

[45] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and S. L.
Sondhi, Phys. Rev. B 88, 014206 (2013).

[46] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv.
Phys. 65, 239 (2016).

[47] B. Bertini, F. H. L. Essler, S. Groha, and N. J. Robinson, Phys.
Rev. Lett. 115, 180601 (2015).

[48] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Pe-
terson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, Comput.
Sci. Eng. 16, 62 (2014).

[49] N. A. Nystrom, M. J. Levine, R. Z. Roskies, and J. R.
Scott, in Proceedings of the 2015 XSEDE Conference: Scien-
tific Advancements Enabled by Enhanced Cyberinfrastructure,
XSEDE ’15 (ACM, New York, NY, USA, 2015) pp. 30:1–30:8.

[50] A. Lakshminarayan and V. Subrahmanyam, Phys. Rev. A 71,
062334 (2005).

[51] M. Frigo and S. G. Johnson, Proc. IEEE 93, 216 (2005), spe-
cial issue on “Program Generation, Optimization, and Platform
Adaptation”.

[52] M. Suzuki, Phys. Lett. A 146, 319 (1990).
[53] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Com-

mun. Math. Phys. 270, 359 (2007).
[54] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su,

arXiv:1711.10980.

http://dx.doi.org/10.1103/PhysRevLett.114.157201
http://dx.doi.org/ 10.1103/PhysRevLett.119.170503
http://dx.doi.org/ 10.1103/PhysRevLett.119.170503
http://dx.doi.org/ 10.1103/PhysRevB.88.014206
http://dx.doi.org/10.1080/00018732.2016.1198134
http://dx.doi.org/10.1080/00018732.2016.1198134
http://dx.doi.org/10.1103/PhysRevLett.115.180601
http://dx.doi.org/10.1103/PhysRevLett.115.180601
http://dx.doi.org/10.1109/MCSE.2014.80
http://dx.doi.org/10.1109/MCSE.2014.80
http://dx.doi.org/10.1145/2792745.2792775
http://dx.doi.org/10.1145/2792745.2792775
http://dx.doi.org/10.1103/PhysRevA.71.062334
http://dx.doi.org/10.1103/PhysRevA.71.062334
http://dx.doi.org/10.1016/0375-9601(90)90962-N
http://dx.doi.org/10.1007/s00220-006-0150-x
http://dx.doi.org/10.1007/s00220-006-0150-x
http://arxiv.org/abs/1711.10980

	Probing ground-state phase transitions through quench dynamics
	Abstract
	Acknowledgments
	References


