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We present an experimental study on non-equilibrium dynamics of a spinor condensate after it is
quenched across a superfluid to Mott insulator (MI) phase transition in cubic lattices. Intricate dy-
namics consisting of spin-mixing oscillations at multiple frequencies are observed in time evolutions
of the spinor condensate localized in deep lattices after the quantum quench. Similar spin dynamics
also appear after spinor gases in the MI phase are suddenly moved away from their ground states
via quenching magnetic fields. We confirm these observed spectra of spin-mixing dynamics can be
utilized to reveal atom number distributions of an inhomogeneous system, and to study transitions
from two-body to many-body dynamics. Our data also imply the non-equilibrium dynamics depend
weakly on the quench speed but strongly on the lattice potential. This enables precise measurements
of the spin-dependent interaction, a key parameter determining the spinor physics.

Spinor Bose-Einstein condensates (BECs) are multi-
component condensates possessing a spin degree of free-
dom [1]. Combined with optical lattices and microwave
dressing fields, spinor gases offer an unprecedented de-
gree of control over many parameters and have thus
been considered as ideal candidates for studying non-
equilibrium dynamics [1–12]. Such a system can be eas-
ily prepared far away from equilibrium through quench-
ing one of its highly-controllable parameters, e.g., the
number of atoms, temperature, total spin of the system,
the lattice potential, or the dimensionality of the sys-
tem [1–10]. Interesting dynamics have also been initiated
in lattice-confined spinor gases by non-equilibrium initial
states, such as interaction-driven revival dynamics in one-
dimensional Ising spin chains [13], dynamics and equili-
bration of spinor BECs in two-dimensional lattices [3],
and spin-mixing dynamics of tightly confined atom pairs
in cubic lattices [14, 15]. Another notable advantage of
spinor systems on investigating non-equilibrium dynam-
ics is their long equilibration time, ranging from tens of
milliseconds to several seconds [1, 3]. Experimental stud-
ies on non-equilibrium dynamics have been conducted
in spinor gases extensively at two extremes, i.e., in a
clean two-body system with a pair of atoms in the Mott-
insulator (MI) phase [14, 15], and in a many-body sys-
tem with more than 104 atoms in the superfluid (SF)
phase [1–4]. Transitions between these two extremes,
however, remain less explored [5].

In this paper, we experimentally confirm that lattice-
trapped spinor BECs provide a perfect platform to under-
stand these less-explored transitions. Our experiments
are performed in a quantum quench scenario starting
with an antiferromagnetic spinor BEC at its SF ground
state, based on a theoretical proposal in Ref. [5]. We
continuously quench the potential of a cubic lattice to a
very large value, completely suppressing tunnelings to
freeze atom number distributions in individual lattice
sites. Spin dynamics are observed at fast quench speeds,
and adiabatic SF-MI quantum phase transitions are de-
tected after sufficiently slow lattice ramps. About half

of the data shown in this paper are collected after the
lattice is quenched at an intermediate speed, which is
slow enough to prevent excitations to higher vibrational
bands while remaining fast enough to suppress hopping
among lattice sites. We observe dynamics consisting of
spin-mixing oscillations at multiple frequencies in spinor
BECs after the quantum quench in magnetic fields of
strength B < 60 µT. The remaining data are taken after
adiabatic lattice ramps. Similar spin dynamics also occur
after we abruptly move spinor gases in the MI phase away
from their ground states via quenching magnetic fields.
In our system, an inhomogeneous system with an ad-
justable peak occupation number per lattice site (npeak),
a significant amount of lattice sites are occupied by more
than two atoms. The observed spin-mixing spectra are
thus utilized to study transitions between two-body and
many-body spin dynamics and to reveal atom number
distributions of an inhomogeneous system. Our data also
indicate the non-equilibrium dynamics depend weakly on
the quench speed but strongly on the lattice potential.
We find every observed spin dynamics is well described
by a sum of multiple Rabi-type spin-mixing oscillations.
This enables us to precisely measure the ratio of the spin-
independent interaction U0 to the spin-dependent inter-
action U2, an important factor determining the spinor
physics.
The site-independent Bose-Hubbard model has suc-

cessfully described lattice-confined spinor BECs [5, 16,
17]. We can understand our data taken in deep lattices
with a simplified Bose-Hubbard model by ignoring the
tunneling energy J as follows [5, 17],

H =
U0

2
n(n−1)+

U2

2
(~S2−2n)+q(n1+n−1)−µn . (1)

Here q is the net quadratic Zeeman energy induced by
magnetic and microwave fields, µ is the chemical poten-
tial, n =

∑

mF
nmF

is the total atom number in each
lattice site with nmF

atoms staying in the hyperfine mF

state, and ~S is the spin operator [5, 17].
We start each experimental cycle at q/h =40 Hz in free
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FIG. 1. (a) Observed spin dynamics after Quench-Q se-
quences to different q. Lines are fits based on Eq. (2) [18].
(b) Lines denote the predicted energy En = h · fn (see text).

space with a spin-1 antiferromagnetic spinor BEC of up
to 105 sodium atoms in its ground state, the longitudinal
polar (LP) state with ρ0 = 1 andm = 0 [18]. Here ρmF

is
the fractional population of the mF state, m = ρ+1−ρ−1

is the magnetization, and h is the Plank constant. Two
different quench sequences, Quench-L and Quench-Q, are
applied in this paper [18]. In the Quench-L sequences, we
tune magnetic fields to a desired q and then quench up
the depth uL of a cubic lattice from 0 to 28(2)ER within
a time duration tramp, where ER is the recoil energy [18].
This final depth uL is much larger than SF-MI transi-
tion points and thus deep enough to localize atoms into
individual lattice sites. In the Quench-Q sequences, we
adiabatically ramp up cubic lattices to a final depth of
uL ≥ 28ER in a high field (where q ≫ U2), which en-
sures atoms cross SF-MI transitions and enter into their
ground states (where ρ0 ≃ 1) in the MI phase [16]; and we
then suddenly quench magnetic fields to a desired q for
initiating non-equilibrium dynamics. After each quench
sequence, we hold atoms in lattices for a certain time
thold, then measure ρ0 based on Ref. [18].

Non-equilibrium dynamics consisting of spin-mixing
oscillations at multiple frequencies are observed after
both Quench-L and Quench-Q sequences in spinor gases
localized in deep lattices at q/h < 100 Hz. Two typ-
ical time evolutions detected after Quench-Q sequences
are shown in Fig. 1(a). Such an evolution appears to
be fit by a composition of multiple Rabi-type oscilla-
tions (see solid lines in Fig. 1(a) and Eq. (2)). This
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FIG. 2. (a) Triangles (circles) represent fast Fourier transfor-
mations (FFT) over the first 40 ms (80 ms) of thold on the
q/h = 85 Hz data set shown in Fig. 1 (a). Vertical lines mark
the predicted fn (see text). Solid lines are five-Gaussian fits.
Results obtained at thold = 40 ms are shifted up by 0.4 for
visual clarity. (b) Atom number distributions extracted from
the thold = 40 ms FFT spectrum in Panel (a). We define
χn as the fraction of atoms localized in lattice sites having n
atoms, and extract χn from dividing the area below the corre-
sponding peak in a FFT spectrum by the spin oscillation am-
plitude Dn (see Ref. [19]). Black bars mark the predicted χn

in Mott-insulator shells at npeak = 6 based on Eq. (1) and the
Thomas-Fermi approximation. (c) Similar to Panel (b) but
extracted from the thold = 80 ms FFT spectrum in Panel (a).

can be explained by considering that n atoms tightly
confined in one lattice site display a Rabi-type oscilla-
tion at a fixed frequency fn, and the observed dynam-
ics combine all time evolutions occurring in individual
lattice sites for our inhomogeneous system. We derive
fn = En/h from Eq. (1), where En is the energy gap
between the ground state and the first excited state in
the subspace of m = 0 at a given n (see Fig. 1(b)). An-
alytical expressions for fn can be found at n = 2 and
n = 3, i.e., f2 = U2

√

9− 4(q/U2) + 4(q/U2)2/h and

f3 = U2

√

25 + 4(q/U2) + 4(q/U2)2/h. We develop the
following empirical formula based on the predicted fn
for an inhomogeneous system with a certain npeak, and
find all observed spin dynamics can be fit by this formula
(see typical examples in Fig. 1(a) and Ref. [18]),

ρ0(t) =

npeak
∑

n=2

An exp(−t/τn) sin [2πfn(t− t0)]

+ ∆ρ0 exp(−t/τ0) +
1

3
. (2)

Here the first term combines individual Rabi-type oscil-
lations at all possible n with 1/τn being the damp rate
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FIG. 3. (a) Observed spin dynamics after Quench-L sequences at two tramp. Lines are fits based on Eq. (2). Data taken at
tramp = 1.5 ms are shifted up by 0.1 for visual clarity. (b) Extracted U2 and U2/U0 from fitting observed dynamics with Eq. (2)
at various tramp [20]. The horizontal line is a linear fit. (c) Similar to Panel (b) but based on our data taken under 20 different
conditions. The right axis marks the corresponding ratio a2/a0 = (U2+U0)/(U0−2U2), where a0 and a2 are scattering lengths.

for oscillation amplitudes and t0 marking the beginning
of oscillations, while the second term describes an overall
decay of spin oscillations at a decay rate of 1/τ0. This
decay may be mainly due to unavoidable lattice-induced
heatings. The third term of Eq. (2) indicates the three
spin components equally distribute in equilibrium states
when thold → ∞ [3, 22]. The validity of Eq. (2), a conser-
vative model, may be justified by the fact that observed
atom losses are less than 10% within every time evolution
studied in this paper.

To better illustrate the spin-mixing dynamics, we con-
duct fast Fourier transformations (FFT) onto all ob-
served time evolutions. Two typical FFT spectra ex-
tracted from the same data set over different time dura-
tions are shown in Fig. 2(a), where the vertical lines mark
the five fn predicted by Eq. (1). Each of these two FFT
spectra has five distinguished peaks agreeing well with
the predictions of Eq. (1), i.e., all spin components in the
three even Mott lobes oscillate at lower frequencies while
particles in the two odd Mott lobes display higher spin
oscillation frequencies when q/U2 < 1.55. Atom num-
ber distributions in the spinor gases can also be revealed
from the corresponding FFT spectrum over a given time
duration, as explained in Figs. 2(b) and 2(c). A compar-
ison between these two figures clearly demonstrates that
number distributions χn in our system quickly change
with time thold and the n = 2 Mott lobe becomes more
dominating after atoms are held in deep lattices for a
longer time. This implies atoms in the n = 2 Mott
lobe decay more slowly, which may be owing to a lack
of three-body inelastic collisions in this lobe. Figure 2(b)
shows another notable result: each experimental χn ex-
tracted from the FFT spectrum over a short time dura-
tion (i.e., thold = 40 ms) coincides with the theoretical
χn derived from Eq. (1) and the Thomas-Fermi approx-
imation for Mott-insulator shells at npeak = 6. Atoms in
initial states distribute into these predicted Mott shells
during the Quench-Q sequences, because the initial states
are the ground states of the MI phase. Our data thus ex-
perimentally confirm that the spin-mixing dynamics and

their corresponding FFT spectra over a short thold can
efficiently probe the initial Fock-state distributions after
a sufficiently fast quench.

Similar non-equilibrium dynamics are also detected in
time evolutions of spinor gases after Quench-L sequences
under a wide range of magnetic fields (see Fig. 3). To our
knowledge, this may be the first experimental observa-
tion of such complicated spin-mixing dynamics, although
its theoretical model has been studied by Ref. [5]. Our
observations indicate the spin-mixing dynamics weakly
depend on tramp [23]. Typical examples can be seen in
Fig. 3(a), where the data sets collected at distinct tramp

display similar dynamics with almost identical oscillation
frequencies and slightly different oscillation amplitudes.
This may be due to the fact that tramp in a Quench-L
sequence is carefully chosen for limiting all spin compo-
nents to oscillate between the ground states and the first
excited states.

The spin oscillations observed after Quench-L se-
quences can also be well fit by Eq. (2) (see Fig. 3(a)).
We can extract the spin-dependent interaction U2 from
these fitting curves, because U2 decides frequency fn
when n ≥ 2 at a fixed q. Figures 3(b) and 3(c) show
20 experimental values of U2 extracted from our data
taken under very different conditions. By applying lin-
ear fits to these data points, we find a precise value for
two key parameters that determine the spinor physics,
i.e., U2/U0 ≃ 0.035(3) and a2/a0 ≃ 1.115(10) for 23Na
atoms. Here a2 and a0 are s-wave scattering lengths,
and a2/a0 = (U2+U0)/(U0−2U2) based on Ref. [25, 26].
Many published values of U2/U0 were derived from the
scattering lengths [5, 27–33]. For example, Refs. [27, 28]
respectively found scattering lengths that would lead to
U2/U0 = 0.032(14) and 0.035(11). In addition, measur-
ing the scattering lengths through Feshbach spectroscopy
could yield U2/U0 = 0.037(6) [29] and 0.036(3) [30].
Therefore, the observed spin dynamics can conveniently
measure spin-dependent interactions and U2/U0 with a
good resolution.

We also notice one puzzling difference between the
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FIG. 4. (a) Observed spin dynamics after Quench-Q se-
quences to q/h = 30 Hz at various uL,z while uL,x = uL,y =
33(3)ER (see text). Results obtained at uL,z = 33(3)ER,
25(2)ER, and 19(2)ER are respectively shifted up by 0.55,
0.25, and 0.06 for visual clarity. Lines are fits based on Eq. (2).
(b) FFT spectra of the dynamics shown in Panel (a). Lines
are two-Gaussian fits.

non-equilibrium dynamics initiated by Quench-L and
Quench-Q sequences: atoms appear to oscillate with a
larger amplitude despite having the same frequencies af-
ter the Quench-Q sequence, even if spinor gases are pre-
pared into the same final uL and q by these two quench se-
quences. This amplitude difference may be attributed to
the inevitable dephasing and energy dissipations induced
by a number of tunneling processes. Note that atoms
are fully localized in individual lattice sites with neg-
ligible tunnelings during Quench-Q sequences. In con-
trast, spinor gases cross SF-MI phase transitions during
a Quench-L sequence, tunnelings among adjacent sites
thus cannot be ignored during a certain part of this se-
quence. Other possible reasons for the different oscilla-
tion amplitudes may include significant heatings induced
by first-order SF-MI phase transitions at a small q dur-
ing Quench-L sequences [16], different atom number dis-
tributions introduced by the quench sequences [34], and
non-adiabatic lattice ramps in Quench-L sequences.

To understand how tunnelings affect the spin-mixing
dynamics, we monitor spin oscillations after varying the
tunneling energy J in a well-controlled way [8]. We first
prepare a non-equilibrium initial state with a Quench-Q
sequence to q/h = 30 Hz in a very deep cubic lattice of
uL,x = uL,y = uL,z = 33(3)ER with J ≃ 0; and then sud-
denly increase J to a desired value by properly reducing
only one lattice depth uL,z. Here uL,x, uL,y, and uL,z are
depths of the three lattice beams along orthogonal direc-

tions, respectively. Results shown in Fig. 4 are collected
at four signature uL,z, gradually spanning from the few-
body dynamics for spinor gases tightly localized in deep
lattices at uL,z = 33ER with J ≃ 0, to the many-body
dynamics for atoms loosely confined in shallow lattices
with J ≫ 0 at uL,z = 12ER. Amplitudes of spin-mixing
oscillations appear to quickly decrease as uL,z is reduced,
and completely vanish when uL,z < 14ER. We may un-
derstand these observations from two simple illustrations.
In one scenario, two atoms oscillate at the frequency f2
in an n = 2 lattice site. The spin oscillation disappears
as one of the two atoms tunnels out of the site. In an-
other scenario, n > 2 atoms oscillate in a lattice site
at frequency fn. After one atom hopping out of this
site, spin oscillations occurring in this site and the adja-
cent site that accepts the atom should be changed. The
occurrence of many of such tunneling events could sig-
nificantly reduce oscillation amplitudes of the observed
spin-mixing dynamics. As J increases with the reduc-
tion of uL,z, the damping is enhanced and eventually
stops the spin oscillations. As a numerical example, the
predicted damp time constant due to tunnelings is 11 ms
at uL,z = 19ER [8], which is comparable to the exper-
imental τn of around 15 ms extracted from Fig. 4(a).
These results justify our use of deep lattices and subse-
quent neglecting of J in Eq. (1). The underlying physics
of the damped spin dynamics and its connection with
the Schwinger boson model [35, 36] are worthy of further
investigation.

Figure 4(b) show the FFT spectra extracted from
the non-equilibrium dynamics observed at the four uL,z.
Each of these FFT spectra has only two distinguished
peaks rather than the predicted five peaks, i.e., the wide
peaks at around 250 Hz correspond to the oscillations
of even n atoms and the wide peaks at around 450 Hz
to the oscillations of odd n atoms. One possible rea-
son for this discrepancy is thold needs to be much longer
(greater than 160 ms for all even n) to reduce the alias-
ing effect of the spectrum analysis, but thold in our sys-
tem is limited by lattice heatings and atom losses. The
FFT spectra in Fig. 4(b), however, clearly show that a
larger uL,z leads to spin oscillations of higher frequencies.
This can be interpreted by the fact that frequency fn is
determined by U2 and thus also by the effective lattice
depth uL = 3

√
uL,xuL,yuL,z. Our calculations confirm

that the effective U2 gives oscillation frequencies that fall
into those broad peaks seen in Fig. 4(b).

In conclusion, we have presented the first experimen-
tal study on few-body spin dynamics and transitions be-
tween the well-studied two-body and many-body dynam-
ics in antiferromagnetic spinor BECs. Dynamics con-
sisting of spin-mixing oscillations at multiple frequencies,
as opposed to the singular frequency seen in a BEC of
thousands of atoms in the superfluid phase, have been
observed in time evolutions of the spinor condensate lo-
calized in deep lattices after two quench sequences. Un-
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like the many-body spin dynamics especially those inter-
preted by the single mode approximation in Refs. [1–3],
the spin-mixing oscillations presented in this paper in-
dicate quantum recurrences induced by discrete energy
spectra [5]. We have confirmed our observed spin-mixing
dynamics can reveal atom number distributions of an in-
homogeneous system and also enable precise measure-
ments of two key parameters. The lattice quench method
is applicable to other spinor systems.
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