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Robust qubit memory is essential for quantum computing, both for near-term devices operating
without error-correction, and for the long-term goal of a fault-tolerant processor. We directly
measure the memory error εm for a 43Ca+ trapped-ion qubit in the small-error regime and find
εm < 10−4 for storage times t<∼ 50 ms. This exceeds gate or measurement times by 3 orders of
magnitude. Using randomized benchmarking, at t = 1 ms we measure εm = 1.2(7) × 10−6, around
ten times smaller than that extrapolated from the T ∗

2 time, and limited by instability of the atomic
clock reference used to benchmark the qubit.

A requirement for any physical realization of a quan-
tum computer is the capability to preserve and to exploit
the coherent behaviour of its constituent qubits. During
the course of a quantum computation, environmentally-
induced noise and imperfections in the control apparatus
inevitably lead to a dephasing of qubit superpositions,
which introduces memory errors εm. While contributions
to this error stemming from correlated noise can be sup-
pressed using methods such as dynamical decoupling [1–
3], quantum error correction (QEC) techniques [4, 5] are
necessary to counteract the remaining error. In a typical
QEC circuit, ancilla qubits need to be prepared, entan-
gled with logic qubits, and measured, before appropriate
feedback is applied to the logic qubits. Thus it is essen-
tial that the memory error remains below a correctable
level at least for the duration of these operations, and
preferably for even longer, to reduce the frequency with
which “idle” qubits need to be corrected. Depending on
the QEC methods used, and the architecture of the com-
puter, the maximum correctable error can be as high as
∼ 10−2 [6], but a level of 10−4 is often taken as an im-
portant target for realistic overheads [7]. The longer εm
remains correctable, the more flexibility there is in both
the physical and logical design of the computer, and the
greater the scope for increasing the connectivity of qubits
(e.g., by moving the qubits around physically [8]).

For qubits with sufficiently long depolarization life-
times (T1), the memory error εm is determined by the
relative stability of the qubit and reference oscillator fre-
quencies [9]. The variation of εm with storage time t
depends on the spectrum of the noise processes that af-
fect these frequencies. The benchmark almost univer-
sally used to quantify the memory performance is the
coherence time T ∗2 , the time constant for decay of qubit
phase coherence when modelled by exponential decay
exp (−t/T ∗2 ). The exponential decay model assumes that
the spectrum of the frequency noise is white. T ∗2 can
be obtained by measuring the fringe contrast in Ram-
sey experiments as a function of the Ramsey delay τR.
For τR∼T ∗2 , the memory error is much larger than qubit
state preparation and measurement (SPAM) errors (typ-
ically εSPAM

>∼ 10−3), and can therefore be measured eas-

ily. In such a method, information regarding the initial
stages of decoherence – the regime relevant to quantum
computing – has to be inferred by extrapolation, as in
this regime εm <∼ εSPAM so the large amount of data needed
to measure εm leads to impractically long experiments.
Consequently, any non-exponential structure to the co-
herence decay at short timescales remains undetected,
leaving uncertainty about the true impact of memory er-
rors on the computer’s operation.

Previous studies of qubit decoherence have measured
T ∗2 ranging from minutes to hours in large ensembles of
trapped ions or nuclear spins [10–13]. For single phys-
ical qubits, a Ramsey T ∗2 ≈ 50 s was measured for a
43Ca+ ion [14], and a coherence time of T2∼ 10 min was
obtained by applying dynamical decoupling pulses to a
171Yb+ ion [15]. Only a single study [16] has attempted
to quantify the memory fidelity in the low-error regime
of interest for quantum computing: in that work, a tech-
nique based on interleaved randomized benchmarking
(IRB) was introduced to measure memory errors much
smaller than εSPAM, and was used in a superconducting
qubit system to show that εm reached ∼ 10−3 after a time
equal to the typical duration of a single entangling gate.
In the present work, we characterize the memory perfor-
mance of a 43Ca+ trapped-ion hyperfine “atomic clock”
qubit (frequency 3.2 GHz) both directly, using Ramsey
experiments with short delays and high statistics, and
indirectly, using the IRB method.

We use a microfabricated, planar surface-electrode ion
trap that incorporates integrated microwave circuitry
(resonators, waveguides, and coupling elements), and
that is operated at room temperature. Its design, the
details of which can be found in [17], allows for single-
and two-qubit quantum logic gates to be driven by near-
field microwave radiation instead of by lasers, eliminating
photon-scattering errors and offering improved prospects
for scalability [18–20]. For coherent manipulation of the
qubit, we apply microwave pulses to electrodes which lie
75µm below the ion (see §A1). The experimental control
and timing of the pulse sequences (with ns precision and
ps jitter) is handled via ARTIQ [21].

The main source of memory decoherence in trapped-
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ion hyperfine qubits typically stems from fluctuating
magnetic fields. An established method for suppressing
the effect of these fluctuations is to use a qubit based
on an “atomic clock” transition whose frequency is inde-
pendent of magnetic field to first order [10, 14, 15, 22].
In this work, we use the intermediate-field 43Ca+ clock
qubit formed by the |↓〉 = 4S4, 0

1/2 and |↑〉 = 4S3,+1

1/2 ground-
level hyperfine states [23] at a static magnetic field of
B0 ≈ 146 G [14]. We limit the effect of the qubit’s
second-order field dependence by stabilizing the field [24]
to within ∆B <∼ 1 mG of the field-independent point B0.

We first measure the memory error directly, using con-
ventional Ramsey experiments in which the phase φ of
the second π/2 pulse is varied relative to that of the first
(fig.1a). We measure the Ramsey fringe contrast by fix-
ing φ = φ0 or φ = φ0 + 180◦, for fixed offset φ0, rather
by than scanning φ and fitting the resulting fringe with
a floated phase offset or scaling factor to compensate for
slow phase drifts (as was done in prior work [14, 22]).
This ensures that our measurement is sensitive to phase
drifts (Z-rotations) of the qubit relative to the microwave
local oscillator, as would be the case during a quantum
computation. The offset φ0 is calibrated before (but not
during) experimental runs to compensate for any residual
detuning offset of the microwaves (see §A1).

Since we aim to measure any loss in the fringe con-
trast (which is ideally 1) at a similar level to our εSPAM ≈
2 × 10−3, it is important to monitor drifts in εSPAM, or
systematic dependence of εSPAM on the Ramsey delay τR.
We follow each trial of the Ramsey sequence by two con-
trol sequences to measure εSPAM = 1

2 (ε↓ + ε↑): the first
consists of a delay τR between qubit |↑〉 state preparation
and measurement, the second contains an additional π
pulse to prepare the |↓〉 state. We find that εSPAM shows
negligible systematic variation for τR < 1 s, and remains
≤ 10−2 for τR ≤ 10 s [26]. Alternating SPAM measure-
ments with Ramsey experiments in this way allows us to
capture any drifts in εSPAM with similar statistical uncer-
tainty as for the Ramsey data. We subtract εSPAM from
the measured contrast loss for each τR.

Results of this experiment, which required a week of
continuous data acquisition, are shown in fig.1b. For a
direct comparison with the IRB results (below), we can
convert the loss in Ramsey fringe contrast to a memory
error by scaling it by a factor of 1

3 : this takes into ac-
count that the error measured with IRB varies between 0
and 1

2 ; and that in the IRB experiments the qubit state
spends only 2

3 of the time near the equator of the Bloch
sphere, where it is sensitive to dephasing. The memory
error is characterized down to a delay of τR = 200 ms, at
which point uncertainty in εSPAM limits our knowledge of
εm to an upper bound only. Collecting more data would
reduce this uncertainty, but only with the square root
of the acquisition time, making this approach impracti-
cal for exploring εm below the 10−4 level; it would also
require systematic drifts in εSPAM to be � 10−4. Fig.1b
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FIG. 1. Two-point Ramsey experiments for measuring the
qubit memory error. (a) Sequences used to measure the max-
imum and minimum of the Ramsey fringe. The phase differ-
ence between the final π/2 pulses remains fixed at φ̃−φ = 180◦

throughout the experiments. (b) SPAM-corrected loss of
Ramsey fringe contrast. The line represents exponential con-
trast decay (fixed at 0 for τR = 0) fitted to the data with
τR > 1 s, where the SPAM error is negligible compared with
the contrast error; the fit gives T ∗

2 = 22(3) s. The right-hand
ordinate gives the memory error, averaged over the Bloch
sphere, associated with a given Ramsey contrast loss.

also illustrates that assuming an exponential decay based
on contrast measurements at long delays, as is custom-
ary in T ∗2 measurements, would here lead to a significant
overestimate of the memory error for shorter delays.

To circumvent the limitation imposed on memory er-
ror measurements by the SPAM error, we follow the ap-
proach introduced by O’Malley et al. [16] which employs
the technique of IRB. This method amplifies the mem-
ory error relative to the SPAM error by subjecting the
qubit to m periods τ of dephasing instead of to a single
period, while ensuring that errors add incoherently by
interleaving each delay τ with a Clifford gate Ci, sam-
pled randomly from the full single-qubit Clifford group.
We call the probability with which a given gate sequence
of length m produces the predicted final state the se-
quence fidelity, and for each m we calculate the average
sequence fidelity over k = 50 distinct random sequences.
The average sequence fidelity follows a decay 1

2 (apm + b)
with increasing m [27, 29], where p ∈ [0, 1] is the depo-
larizing parameter, related to the average error rate by
ε = 1

2 (1− p). Comparing the average sequence fidelity of
IRB sequences with interleaved delays to that of “refer-
ence” RB sequences without delays allows us to isolate
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the average dephasing error associated with each delay,
which we call the memory error εm = 1

2 (1 − pIRB/pRB).
The depolarizing parameter of the reference sequences
pRB incorporates Clifford gate errors alone, while that of
the interleaved sequences pIRB also includes the memory
errors from the delays. The parameter a = 1 − 2εSPAM

captures SPAM errors, which we ensure are equal in the
reference and IRB sequences by adding a delay mτ after
the final gate of the reference sequence. We fix b = 1
as εSPAM � 1. In this measurement of εm, the precision
attainable is no longer constrained by SPAM errors, but
by the magnitude of the Clifford gate errors, while the
accuracy attainable is limited by any systematic changes
of the Clifford gate errors when delays are interleaved.

We first characterize the Clifford gate errors with-
out extra delays, using the “standard RB” (SRB)
method [27], which involves applying random sequences
of the form shown in fig.2a. The Cliffords are composed of
±Xπ/2 and ±Yπ/2 rotations on the Bloch sphere, with an
average of 3.50 π/2 rotations per Clifford [28], separated
by 12µs to allow the DDS source time to switch between
pulse profiles. The duration of each pulse is set to be
∼ 10µs and periodically fine-tuned by optimizing the se-
quence fidelity for fixed m (typically m = 2000). Fig.2b
shows the measured sequence fidelity decay, yielding an
average error per Clifford gate of εg = 1.7(2) × 10−6. A
previous measurement of the gate error in this trap using
the “NIST RB” method [14, 29] (which used an average
of two π/2 rotations per gate) gave εg = 1.0(3) × 10−6.
Based on numerical modelling of known experimental im-
perfections [30], the SRB and NIST RB methods are ex-
pected to yield a similar gate error; the 2σ discrepancy
may be due to the larger number of physical π/2 rota-
tions per gate used in the SRB experiment.

Systematic variations of εg when the delays τ are in-
terleaved can occur because the associated change in mi-
crowave duty cycle causes thermally-induced shifts in the
microwave power, and these variations would limit the
accuracy of the IRB experiment if not prevented. Re-
calibrating the π/2-pulse time for each delay length τ by
optimizing the sequence fidelity (as above) is impractical,
as the interleaved delays significantly slow down the ex-
periments. Instead, we make the π/2-rotations robust to
pulse area changes by replacing them with BB1 compos-
ite gates [31]. This involves appending a {φπ, (3φ)2π, φπ}
sequence to each π/2-pulse (fig.3a), with φ appropriately
chosen for every different π/2-pulse phase. Due to tech-
nical limitations of the DDS microwave source, imple-
menting BB1 composite pulses required a Clifford gate
decomposition into +Xπ/2 and +Yπ/2 gates only, with an
average of 3.58 π/2 rotations (i.e. 14.3 microwave pulses)
per Clifford. The additional physical pulses necessary for
the BB1 gates increase the average Clifford gate error to
ε′g = 6(1)×10−6; no change in ε′g was measured for a mi-
crowave pulse amplitude reduction of 1%, much greater
than that observed due to duty cycle effects.

example of Clifford
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FIG. 2. “Standard” randomized benchmarking of single-qubit
gates. (a) Gate diagram of the sequence used, including an
example decomposition of a Clifford gate Ci into π/2-pulses.
The qubit is prepared in |↑〉 and then subjected to m ran-
dom gates from the Clifford set, followed by an (m + 1)th
gate that is chosen to rotate the qubit to one of its two basis
states, selected with equal probability. Each RB sequence is
alternated with a measurement of εSPAM, for which the delay
between state preparation and measurement is equal to the
duration of the RB sequence; this allows us to check for any
systematic dependence of εSPAM on sequence duration. (b)
Measured sequence fidelities (blue circles) and SPAM fideli-
ties (grey diamonds), as a function of sequence length. The
fit to a decay 1

2
(apm + 1) (blue line) gives an average Clifford

gate error of εg = 1.7(2)×10−6. The fit intercept is consistent
with the mean measured SPAM error of 2.7(4) × 10−3 (grey
line). Error bars on each point are the standard error of the
mean over k = 50 sequence randomizations. Shaded regions
represent the 1σ uncertainties of the fits.

Results of the measurement of the qubit memory er-
ror εm using IRB with BB1 gates are shown in fig.3c
(blue circles). During each data point, which requires up
to 2 days of continuous acquisition, we measure the de-
tuning between the qubit transition and the microwave
source every 4 hours and correct for slow drifts; from
these measurements, we estimate that the contribution to
εm due to detuning errors is negligible [26]. Also plotted
in fig.3c (grey squares) is the data from the Ramsey ex-
periments (fig.1). The memory error from both methods
is consistent, but the superior sensitivity of the IRB ap-
proach enables characterization of εm for delays as short
as τ = 1 ms, where, at εm = 1.2(7)× 10−6, it approaches
the noise floor set by the BB1 Clifford gate error. We
fit a decoherence model to the IRB data, which assumes
white and pink (1/f) frequency noise. The memory error
for τ <∼ 100 ms is consistent with that expected from inde-
pendently measured 1/f2 phase noise (white frequency
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FIG. 3. Single-qubit memory errors εm measured by interleaved randomized benchmarking. (a) IRB sequence, with delays τ
inserted between each Clifford gate Ci. An example decomposition of a Clifford gate Ci into +Xπ/2 and +Yπ/2 gates is shown.
Also shown are the associated BB1 decompositions: each Xπ/2 gate is followed by a sequence of rotations {φπ, (3φ)2π, φπ};
similarly for each Yπ/2 gate, but around an axis φ̃. For the reference sequence (ref), an additional delay mτ is inserted after
the last Clifford gate to keep the time between the qubit initialization and readout equal to that in the IRB sequence, thus
minimizing any systematic differences in εSPAM. (b) Qubit frequency offset ∆f versus offset ∆B of the magnetic quantization
field, relative to the field-independent “clock” point. (c) Average memory error measured for interleaved delays 1 ms < τ < 10 s.
At each τ , we choose m to give a total sequence infidelity of ∼ 0.1, which is much larger than the SPAM error. The IRB data
(blue circles) is consistent with the Ramsey results (grey squares, from fig.1). We fit a decoherence model to the IRB data (blue
line - see §A3 for details), which contains white noise and 1/f noise with a low-frequency cut-off (this cut-off is consistent with
the duration of the longest sequences). IRB sequences including dynamical decoupling (red diamonds) show that the error due
to 1/f noise can be suppressed at long times using this technique. The dashed black line shows the calculated error contribution
from the local oscillator (atomic clock) to which the qubit phase is compared: this accounts for the measured memory error
in the εm <

∼ 10−4 regime. Finally the yellow, green and purple data points show the error measured when the magnetic field is
deliberately offset from the field-independent point by ∆B = (10, 25, 50) mG; note that the local oscillator was left at ∆f = 0,
so that the observed error arises mostly from the corresponding qubit detuning ∆f ≈ (0.12, 0.76, 3.0) Hz (dotted lines).

noise) on the rubidium atomic clock to which the mi-
crowave source is referenced (see §A4). From decoher-
ence measurements of a field-sensitive hyperfine transi-
tion, we estimate that contributions to the memory error
from magnetic field noise are several orders of magnitude
lower than our measured εm (see §A2). The excess error
for τ >∼ 100 ms may be due to other slow drifts, for exam-
ple in the ac Zeeman shift (≈ −6 Hz) arising from the
trap rf fields [32]. We also took IRB data with a simple
dynamical decoupling sequence (an Xπ pulse inserted ev-
ery 100 ms during delays τ ≥ 200 ms), which suppressed
the correlated (1/f) noise, reducing εm at longer delays
to a level consistent with the atomic clock noise.

An important consideration for a many-qubit proces-
sor based on the “quantum CCD” architecture [8] will
be inhomogeneity of the static magnetic field across the
device, which will lead to departures ∆B of the field
from the qubits’ field-independent point B0. To simu-
late the effect of field inhomogeneity, we took further
IRB data with ∆B set to several offset values (fig.3b,c).

To obtain a ‘worst case’ error, we did not adjust the mi-
crowave detuning for the known offset ∆f ; even so, for
∆B = 50 mG, we find εm < 10−4 at τ = 1 ms. This error
is dominated by the effect of the (known) detuning off-
set, here 2

3

[
1− cos2(πτ∆f)

]
≈ 6× 10−5, which could be

corrected for by calibrating the field across the processor.

In conclusion, we have characterized the memory er-
rors of a 43Ca+ trapped-ion hyperfine clock qubit to the
10−4 level by Ramsey measurement, and to the 10−6 level
using interleaved randomized benchmarking. The error
is consistent with 1/f frequency noise at long timescales,
contrary to the white noise model often assumed in T ∗2
measurements. The memory error remains below the
10−4 level relevant to QEC for up to 50 ms, which is
around 3 orders of magnitude longer than the time re-
quired for entangling gates or qubit measurement [33–36].
At these sub-10−4 error levels, the memory error is con-
sistent with the independently-measured phase noise of
the local oscillator, implying that a more stable reference
clock would lead to improved performance.
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