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Quantum error correction was invented to allow for fault-tolerant quantum computation. Systems
with topological order turned out to give a natural physical realization of quantum error correcting
codes (QECC) in their groundspaces. More recently, in the context of the AdS/CFT correspondence,
it has been argued that eigenstates of CFTs with a holographic dual should also form QECCs.
These two examples raise the question of how generally eigenstates of many-body models form
quantum codes. In this work we establish new connections between quantum chaos and translation-
invariance in many-body spin systems, on one hand, and approximate quantum error correcting
codes (AQECC), on the other hand. We first observe that quantum chaotic systems obeying the
Eigenstate Thermalization Hypothesis (ETH) have eigenstates forming approximate quantum error-
correcting codes. Then we show that AQECC can be obtained probabilistically from translation-
invariant energy eigenstates of every translation-invariant spin chain, including integrable models.
Applying this result to 1D classical systems, we describe a method for using local symmetries to
construct parent Hamiltonians that embed these codes into the low-energy subspace of gapless 1D
quantum spin chains. As explicit examples we obtain local AQECC in the ground space of the
1D ferromagnetic Heisenberg model and the Motzkin spin chain model with periodic boundary
conditions, thereby yielding non-stabilizer codes in the ground space and low energy subspace of
physically plausible 1D gapless models.

INTRODUCTION

Quantum error correcting codes (QECC) were origi-
nally designed for fault-tolerant quantum computation
[1]. The idea is to cleverly encode the quantum informa-
tion into entangled states in a way that the information is
inaccessible locally. At first sight, it may seem the condi-
tions for quantum error correction are very different from
everything we have normally in nature, and that it would
take very special engineered quantum systems to realize
it. This intuition turned out to be wrong; QECCs ap-
pear naturally in the groundspace of topological ordered
systems [2]. This connection has lead to many insights
both in the study of quantum error correction [3, 4] and
of topological order [5, 6] in the past 20 years.

In a different direction, in recent years there have
been ongoing efforts of connecting the holographic corre-
spondence to quantum error correction. In the Anti-de
Sitter (AdS)/Conformal Field Theory (CFT) correspon-
dence [7, 8], it has been understood to a certain degree
that, bulk local operators in AdS are dual to nonlocal
operators on the boundary CFT [9]. Quantum error cor-
rection has recently been used [10] for explaining seem-
ingly puzzling facts about this correspondence. It was
argued that bulk local operators, reconstructed on the
boundary, should commute with boundary local opera-
tors only within a certain subspace of the full boundary
CFT Hilbert space. Interpreting this subspace as the
code subspace of an error correcting code not only clears
the apparent puzzles but also gives a new information-

theoretic perspective to the AdS/CFT correspondence.
Since then quantum error correction has served as a guid-
ing feature for the application of tools from quantum
information to the challenge of constructing explicit re-
alizations of AdS/CFT duality [11–13]. Understanding
holographic codes from the perspective of the CFT con-
tinues to be a major open challenge [14, 15].

In this Letter, we explore one-dimensional physical
systems through the lens of AQECC. Guided by the
codes found in the ground space of topologically or-
dered gapped Hamiltonians and the expectation of good
codes in eigenspaces of certain CFTs (motivated by
AdS/CFT correspondence), we ask what other physical
conditions lead to good quantum codes. First we ob-
serve a connection between quantum chaos and quantum
error correction, pointing out that the Eigenstate Ther-
malization Hypothesis (ETH) [16] can be interpreted as
saying that eigenstates with close-by energies form an
AQECC. This observation supports the QECC view of
the AdS/CFT correspondence, as the CFTs considered
there are expected to be chaotic. Then we show that
merely translation-invariance of the Hamiltonian already
implies that most (translation-invariant) eigenstates in
a subextensive energy window of finite energy density
form AQECCs. This general result also applies to inte-
grable models and even to non-interacting Hamiltonians.
In some of these cases we show that it is possible to use
local symmetries of the states to generate an interacting
Hamiltonian that embeds the finite energy eigenstates
(i.e., the codespace) of the noninteracting Hamiltonian
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into the groundspace or low-lying energy subspace of gap-
less 1D quantum systems. As examples we show how this
procedure can give rise to the Heisenberg and Motzkin
models. For these systems we confirm the AQECC per-
formance of the low energy eigenspace by direct calcula-
tions, thereby showing that non-stabilizer codes can ap-
pear at low energy in physically plausible 1D models.
The precise statements about the distance, the dimen-
sion of the codespace and the scaling of the error of the
AQECC, are given for each case.

APPROXIMATE QECC

We start with a brief description of the features of ap-
proximate quantum error correction. For exact quantum
error correction, Knill and Laflamme gave a convenient
set of necessary and sufficient conditions for a code being
able to correct a noisy channel [17]. Similar conditions
for the approximate case were found by Beny and Ore-
shkov [18], which we now review. We consider N qubits
arranged in a line and assume that errors are local. We
say that a subspace C of a 2N -dimensional vector space
is a [[N, k, d, ε]] approximate quantum error correction
code (AQECC) if dim(C) = 2k and for every channel N
acting on at most d consecutive qubits, we have

min
|ψ〉∈C⊗2

max
D

〈ψ|(D ◦ N ⊗ I)(|ψ〉〈ψ|)|ψ〉 ≥ 1− ε, (1)

where the maximum is over decoding channels D, and the
minimum is over pure entangled states acting on C and
a reference system (we denote the tensor product space
of C and the reference by C⊗2 above). In words, this
condition states that one can correct, up to error ε, the
effect of local noise on at most d qubits. If Eq. (1) only
works for a particular N , we say the code is ε-correctable
under N .
In this work we find it convenient to consider a

set of codewords that span the code space, C =

span({|ψ1〉, ..., |ψ2k〉}) ⊂ C2N , and show that these
codewords satisfy an approximate version of the Knill-
Laflamme conditions,

〈ψi|E|ψj〉 = CEδij + εij . (2)

Corollary 5 of the supplementary material shows that if
this condition is satisfied, then the error of the code as

defined in (1) can be bounded as ε ≤ 2d+2kmaxi,j ε
1/2
ij

using [19]. For many-body systems with N sites, it is
natural to seek ε ≤ O(N−c) so that the probability of
recovering the logical state converges to 1 quickly with
increasing system size.

AQECC FROM ETH

The Eigenstate Thermalization Hypothesis (ETH)
states that thermalization in a quantum system takes

place already on the level of eigenstates. Given the
Hamiltonian H =

∑

k Ek|Ek〉〈Ek|, with |Ek〉 being en-
ergy eigenstates with eigenvalue Ek (ordered as E1 ≤
E2 ≤ ... ), Srednicki proposed the following version of
ETH [16]: There are constants c1, c2 > 0 such that for
every El, Ek in the bulk of the spectrum and for any local
observable O,

|〈El|O|El〉 − 〈El+1|O|El+1〉| ≤ exp(−c1N), (3)

and

|〈Ek|O|El〉| ≤ exp(−c2N). (4)

Indeed Eq. (3) tells us that the energy eigenstates
around E are locally indistinguishable from each other,
and therefore also from the thermal state of the same en-
ergy. They ensure that the long-time average of any local
observable is thermal. Eq. (4), in turn, guarantees that
the fluctuations around the long-time average is small.
Comparing the ETH condition Eq. (3) to the AQECC
condition Eq. (2), we observe that:

Remark. ETH implies that any region of the spectrum
with finite energy density have eigenstates forming ap-
proximate error correcting codes.

Note that the distance of the code is given by the range
of locality for which ETH holds in the system. This is
expected to vary depending on the model, and can be
as large as a constant fraction of the size of the system
[20]. From Eq. (2) and Corollary 5 of the supplementary
material, we find that the codes have constant rate, i.e.
k = Ω(N), and exponentially small error. Note that,
these are very good codes for highly chaotic systems in
which ETH holds for d-local observables with d = Ω(N).
However, a major drawback is that the codewords are

exponentially close to each other in energy, hence it is
not clear at all if the Hamiltonian can help with encod-
ing and decoding. One way forward is to split the code-
words in energy by sacrificing either the dimension of the
codespace or the error of the code. We leave to future
work to investigate whether the locality of the Hamilto-
nian leads to good ways of encoding and decoding in this
case.
Notice that ETH codes introduced above are some-

what analogous to random subspace codes (in terms of
the parameters achieved) [21]. This is no coincidence.
One of the ways of understanding quantum chaos is that
apart from a few conserved quantities (e.g., energy), the
physics of the model mimics the one of a fully random
system. Here we give a coding perspective of this view.
An important application of the observation is in con-

nection to the recent proposal of interpreting some as-
pects of the AdS/CFT correspondence as an error cor-
recting encoding of the AdS bulk into the boundary
CFT [10]. It is expected that holographic CFTs are
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chaotic and thus satisfy ETH [22]. Therefore our ob-
servation provides considerable evidence in favor of the
proposal in Ref. [10]. However, ETH is a claim about
eigenstates with finite energy density, whereas the error
correcting properties of eigenstates of holographic CFTs
are expected to hold beyond that, e.g., even at zero en-
ergy. We will partially address this point later in the pa-
per, constructing specific examples of gapless spin chains
with AQECC in their low-lying spectrum. The connec-
tion of ETH and AQECC that we point out also suggests
that such holographic CFTs might be chaotic in an ex-
treme sense of satisfying ETH at all energies.

AQECC FROM TRANSLATION-INVARIANCE

Although ETH is expected to hold for a large class of
systems, its range of validity is still not completely under-
stood. Our next result shows that even just from trans-
lation invariance we can already get codes from eigen-
states of local models (albeit with worse parameters).
Consider a 1D translation invariant Hamiltonian with N
sites. Let SE be the set of energy eigenvalues close to E:
SE := {Ek : Ek ∈ [E −

√
N,E +

√
N ]}, and define the

microcanonical state of energy E as

τMC(E) :=
1

|SE |
∑

k:Ek∈SE

|Ek〉〈Ek|. (5)

Note that in one-dimension the correlation length is
a function of mean energy e := E/N only, and it is a
constant independent of system size when e is too. The
choice 2

√
N for the energy window is arbitrary; all we

need is that the associated microcanonical ensemble has
finite correlation length, which is true as long as it is
subextensive and larger than polylog(N) [23].
We prove that:

Theorem 1. Let H be a 1D translation invariant local
Hamiltonian and E be such that the microcanonical state
at energy E has finite correlation length (independent of
system size). Pick |Ei1 〉, . . . , |EiL〉 uniformly indepen-
dently at random from SE := {|Ei〉 : Ei ∈ [E −

√
N,E +√

N ]}, where {|Ei〉}i is a basis of translation-invariant
eigenstates of H, and k := log(L) = Ω(log(N)). Then
with high probability they form an [[N, k, d, ε]] AQECC
with ε = O(1/N1/8) and

d = min

(

Ω(log(N)), min
p6=q∈[L]

|Eip − Eiq | −O(log(N))

)

.

(6)

Note that by choosing k = δ log(N) for sufficiently
small δ, the minimum energy gap will be of order nΩ(1),
and thus the distance of the code is Ω(log(N)) with high
probability.
The proof in Section B in the supplementary mate-

rials builds upon two results. First, the result of [24]

establishes a weak version of the eigenstate thermaliza-
tion hypothesis (ETH) for 1D translation invariant sys-
tems (see Proposition 7 in the supplementary material):
The fraction of the nonthermal energy eigenstates around
the microcanonical energy E is exponentially small with
the system size N . This means that with high proba-
bility, randomly chosen codewords do look like the ther-
mal state, and hence are locally indistinguishable. Sec-
ond, the result from [25] states that eigenstates of general
(not necessarily translation-invariant) local Hamiltonians
with different energies cannot be “connected” by local
operators, in the sense that the off-diagonal matrix ele-
ments of the local operator in energy eigenbasis drop off
exponentially with the energy gap (see Lemma 9 in Sec-
tion B in the supplementary material). This tells us to
choose the codewords sufficiently far apart in energy so
that we have the desired distance for the code.
Translation invariance is crucial in the proof of the re-

sults. Technically, it allows us to replace the local observ-
able by an extensive observable, given by a sum of trans-
lations of the original one. Then we can use techniques of
large deviation bounds [26] on the measurement of exten-
sive observables in non-critical spin systems to obtain the
result. Intuitively, translation invariance guarantees that
the information of the codewords is spread to the whole
system “uniformly”, and hence cannot be corrupted lo-
cally by noise.
Note that in addition to translation invariance, the

only feature of 1D systems we use in the proof is that
the microcanonical states at finite energy density always
have a finite correlation length. Therefore the theorem
generalizes to higher dimensions for eigenstates with fi-
nite energy densities (albeit with a worse scale of the
error of the code).

AQECC FROM THE LOW-ENERGY

EIGENSPACE OF GAPLESS MODELS

So far we have considered eigenstates at finite energy
density. Here we show they are also relevant to the low-
lying spectrum of gapless models. We first apply Theo-
rem 1 to noninteracting models, and map the codewords
at finite energy eigenstates to low-energy eigenspace of
interacting models. We then further analyze the perfor-
mance of these specific codes by explicitly revealing the
working code subspace.

Classical Models: Consider a 1-local Hamiltonian on
a system of N qubits,

H =
N
∑

i=1

1

2
(I − σzi ) , (7)

which has eigenvalues 0, 1, ..., N . Theorem 1 implies
that with high probability a subset of L randomly cho-
sen translation invariant eigenstates of Eq. (7) with
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energies in [N2 −
√
N, N2 +

√
N ] will be an AQECC

with log(N) distance. As eigenstates, we can take uni-
form superpositions of σz-basis states |s〉, where s =
(s1, ..., sN ) ∈ {−1, 1}N , with a particular magnetization

M(s) =
∑N
i=1 si,

|hNm〉 = 1
√

(

N
N/2+m/2

)

∑

s:M(s)=m

|s〉. (8)

Mapping to Low-Lying Eigenstates: Although The-
orem 1 only applies to states with finite energy density
(when the correlation length of the microcanonical state
is finite), it turns out that the excited state AQECC
in the example above can be embedded into low energy
states of a different local model. This connection is based
on the fact that the permutation symmetric energy eigen-
states (8) of the spin-1/2 model (7) also span the ground
space of the ferromagnetic Heisenberg model,

H = −1

2

N
∑

j=1

(

σxj σ
x
j+1 + σyj σ

y
j+1 + σzj σ

z
j+1

)

. (9)

For ease of notation we consider the version of this model
with periodic boundary conditions (PBCs). We choose
codewords with magnetization in the range (−

√
N,

√
N)

and show the following proposition by explicit calculation
in the supplementary material.

Proposition 2. For any a, b > 0 with 5a/2+b < 1/2 the
ground space of the spin 1/2 ferromagnetic Heisenberg
model with N sites and PBCs contains an [[N, k, d, ε]]
AQECC with k = a logN , d = b logN , and ε =

O
(

log2 N
N1/2−5a/2−b

)

.

Specifically, we prove Proposition 2 in terms of Eq.(2).
A d-local error can change the magnetization by at most
2d, so for different codewords, i.e. the case i 6= j, we have
zero error in Eq.(2). Furthermore, the d-body reduced
density matrix of different codewords are indistinguish-
able in the thermodynamic limit, i.e. this gives the error
for the cases i = j in Eq.(2). Note that the AQECC
parameters achieved in Proposition 2 are asymptotically
equivalent to those in Theorem 1, though one difference
is that in Proposition 2 the codewords are chosen deter-
ministically. Finally, we note that the existence of error
correcting codes in the ground space of Heisenberg mod-
els has been observed before [27, 28], although the choices
of code words as well as the QEC parameters differ in that
work from the ones presented here.

Just as finite energy density codes of (7) can be em-
bedded in the ground space of the Heisenberg model, one
can also consider the spin 1 version of (7),

H =

N
∑

i=1

1

2
(I − Szi ) . (10)

The permutation invariant eigenstates of (10) are uni-
form superpositions of basis states |w〉, where w =
(w1, ..., wN ) ∈ {−1, 0, 1}N, with a particular magneti-

zation M(w) =
∑N

i=1 wi,

|gNm〉 = 1
√

|gNm |
∑

w:M(w)=m

|w〉. (11)

By Theorem 1 a randomly chosen subset of L states
of the form (11) with magnetization m ∈ (−

√
N,

√
N)

will with high probability form an AQECC with distance
Θ(logN). Just as a finite energy density AQECC of (7)
was turned into a ground space AQECC of (9), we seek
a parent Hamiltonian which contains the states (11) in
its ground space.
Such a parent Hamiltonian can be constructed by us-

ing the connection between classical random walks (and
more generally reversible Markov chains) and stoquastic
frustration free local Hamiltonians [29–31]. The follow-
ing rules applied to any pair of consecutive basis labels
(with periodic boundary conditions) suffice to connect all
of the basis states at each energy,

|1,−1〉 ↔ |0, 0〉 , |0, 1〉 ↔ |1, 0〉 , |0,−1〉 ↔ |−1, 0〉.

These local moves can be adjusted into a local Hamil-
tonian such that the states constructed as the uniform
superposition of basis states of the same energy become
the ground states:

H =

N
∑

j=1

(|F 〉〈F |j,j+1 + |U〉〈U |j,j+1 + |D〉〈D|j,j+1) ,

(12)
with |F 〉 = 1√

2
(|ud〉 − |00〉) , |U〉 = 1√

2
(|0u〉 − |u0〉),

|D〉 = 1√
2
(|0d〉 − |d0〉), where the labels −1, 0, 1 is re-

placed by d, 0, u. This model is called the spin-1 Motzkin
chain with periodic boundary conditions (PBCs) [32–34].
Using the well-studied analytical properties of the ground
states of these models, we prove the following proposition
in the supplementary material.

Proposition 3. For any a, b > 0 with 5a/2+b < 1/2 the
ground space of the spin 1 Motzkin model on N sites with
PBCs contains an [[N, k, d, ε]] AQECC with k = a logN

, d = b logN , and ε = O
(

log2 N
N1/2−5a/2−b

)

.

The intuitive explanation and the calculations are sim-
ilar to those for the Heisenberg model. These results also
hold for the degenerate Heisenberg and Motzkin chains
with open boundary conditions with the restriction that
errors are only applied far from the endpoints of the
chain. Finally, we note that it is possible to perturb
the model with a local translation invariant field in such
a way that that |gN0 〉 is the unique ground state, with
an inverse polynomial gap to the first excited state [33].
With this perturbation the states |gNm〉 gain an energy
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that increases with the magnitude of m, but which van-
ishes in the thermodynamic limit. This variant of the
Motzkin chain is of interest in the present context be-
cause it shows that it is possible for models with a unique
ground state to be part of a code space that includes gap-
less excitations.

CONCLUSIONS

In this Letter we have given new examples of ap-
proximate quantum error correction against local noise
in the energy eigenstates of physical systems, which
goes beyond the well-studied ground states of gapped
topologically ordered systems. To be more specific, we
have explicitly showed that energy eigenstates packed
around some finite energy density eigenstate E of sys-
tems obeying ETH, and almost all translation invariant
finite energy eigenstates of 1D translation invariant lo-
cal Hamiltonians, construct approximate error correcting
codes. We applied the latter result to noninteracting lo-
cal Hamiltonians to map the finite-energy-density codes
to the low-energy subspace of interacting Hamiltonians,
eg. Heisenberg model and spin-1 Motzkin chain. We
studied the ground states of these models with periodic
boundary conditions and further detailed the parame-
ters of the approximate error correcting code that can be
found in their low energy.
One can interpret our results from many perspectives.

One perspective may be that it is not unusual to find
error correcting codes in physical systems; it is indeed a
generic phenomena as shown by our results of AQECC
from systems with ETH and translation invariance. An-
other point of view which builds upon the first one is
that even though error correcting codes can be found
easily in Hamiltonian systems, their varying performance
under different types of errors may be a way to char-
acterize different properties of these physical systems.
For example, the Motzkin spin-1 model that we ana-
lyzed is gapless, however the gap closes as O(N−2) on
the contrary to O(N−1) observed in 1D lattice models
whose critical points are effectively described by CFTs.
Hence, Motzkin-type models, even though having er-
ror correciton properties, do not have effective CFT de-
scriptions [35–37]. To pursue its potential relevance to
AdS/CFT(-like correspondence), one shall follow [10, 38]
where certain properties of AdS/CFT such as radial com-
mutativity, subregion duality and Ryu-Takayanagi for-
mula have been matched to operator algebra quantum
error correcting codes.
There are numerous other questions one can ask build-

ing upon our work. Hence, our results shall best be
taken as a first step to elucidate the role of error cor-
recting codes in physical systems, from topological or-
der to ETH, CFTs with or without holographic duals,
and gapless quantum systems. The performance of these

codes under specific noise channels must be intimately
connected to the physical properties manifested by these
systems.
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