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Non-equilibrium stochastic reaction networks are commonly found in both biological and non-
biological systems, but have remained hard to analyze because small differences in rate functions
or topology can change the dynamics drastically. Here we conjecture exact quantitative inequalities
that relate the extent of fluctuations in connected components, for various network topologies.
Specifically, we find that regardless of how two components affect each other’s production rates, it
is impossible to suppress fluctuations below the uncontrolled equivalents for both components: one
must increase its fluctuations for the other to be suppressed. For systems in which components
control each other in ring-like structures, it appears that fluctuations can only be suppressed in
one component if all other components instead increase fluctuations, compared to the case without
control. Even the general N -component system—with arbitrary connections and parameters—
must have at least one component with increased fluctuations to reduce fluctuations in others. In
connected reaction networks it thus appears impossible to reduce the statistical uncertainty in all
components, regardless of the control mechanisms or energy dissipation.

From biochemistry to ecology, biological systems can
form stochastic interaction networks where components
present in low numbers affect each other’s production
or degradation rates. Predicting the dynamical het-
erogeneity this creates is exceedingly difficult, both be-
cause most nonlinear systems are analytically unsolvable
and because even the simplest networks, including those
with just two components, can display oscillations, mul-
timodality, bursting, noise suppression, and a range of
other features depending on exact parameters and con-
nections, which often are unknown [1–4]. However, some
general rules apply regardless of parameters and the form
of rate functions [5–12]. For example, for determinis-
tic dynamical systems, Bendixson’s criterion states that
there are broad classes of feedback systems that cannot
display stable limit cycles [5]. Here we consider simi-
lar types of systems but at the level of stochastic birth
and death events rather than deterministic continuous
changes, and look for constraints on the pattern of fluc-
tuations that can arise.

We first ask whether feedback loops between two com-
ponents can reduce spontaneous fluctuations in both of
them, compared to systems with the same average abun-
dances but constant rates. That is, we consider if there
exist rate functions such that the noise suppression can
be mutual, or if one component must display significant
fluctuations in order for other components to have re-
duced fluctuations. Specifically, we consider the case
where components X1 and X2 are present in integer num-
bers and change in probabilistic birth and death events:

x1
f(x2)−−−−−−−→ x1 + b1

x2
g(x1)−−−−−−−→ x2 + b2

x1
x1/τ1−−−−−−−→ x1 − 1

x2
x2/τ2−−−−−−−→ x2 − 1

. (1)

All rates are propensities, i.e., continuous-time transition
probabilities for jumps between the integer-valued states.
The τ are average lifetimes and b1 and b2 are integer birth
sizes that often equal one but could be large and ran-
domly distributed, e.g. when components are produced
in bursts or litters [13–16]. The reaction rates f(x2),
g(x1) are allowed to take any functional form, i.e., the
components can arbitrarily affect each other’s produc-
tion rates. This includes oscillatory or multimodal be-
havior, and we only exclude systems that cannot become
statistically stationary, e.g. due to infinite lifetimes or
absorption at state {x1, x2} = {0, 0} if f(0) = g(0) = 0.
We consider more complex reaction topologies below, but
many systems selected to suppress noise create minimal
feedback loops to reduce information losses from stochas-
tic signalling events, and models of such systems have
often been similar to special cases of Eq. (1) [17, 18].

Effective noise suppression generally requires fast feed-
back responses, such that the system can self-correct ex-
isting perturbations before new ones arise. Though the
average lifetimes of the two components cannot both be
short relative to each other, the nonlinear rate functions
could amplify even small changes in one component into
large changes in the production rate of the other [7] and
thus in some sense respond quickly to changes. Despite
that, we here conjecture that no such systems, regard-
less of parameters and rate functions f(x2) and g(x1),
could reduce stationary fluctuations in both components,
compared to the corresponding open-loop system where
f and g are constant, for the same averages and burst
statistics. In the absence of bursts (bi = 1) this means
that X1 and X2 cannot both display sub-Poisson fluctua-
tions, which we refer to as an inaccessible Poisson square
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FIG. 1. Trade-off for mutual control systems. A) We consider the following generic class of mutual control systems: each
component is assumed to decay with some (unspecified) half-life but the way in which the two components affect each other’s
production rates R+

i is left completely unspecified, see Eq. (1). B) Analytical results suggest that no such control system
can simultaneously suppress noise in both components below their respective Poisson fluctuations (denoted by 100% in the
diagram). We find numerically that the bounds derived in the high copy number regime (red lines) in fact constrain all tested
systems (black dots) regardless of noise levels and copy numbers. This numerical confirmation suggests that no mutual control
system—regardless of chosen control functions or parameters—can simultaneously exhibit sub-Poisson fluctuations in both
components as indicated by the lack of data points in the lower left. C) Here we present the analytical bounds (colored lines)
of Eq. (4) for different life-times together with exact numerical realizations of systems with nonlinear control systems (dots).
The colors correspond to fixed relative lifetimes, and each dot corresponds to a different system with a different set of control
functions and parameters (see Supplemental Material (SM) for numerical details [19]). For each ratio of relative life-times none
of the tested systems beat the limit of Eq. (4).

(Fig. 1).
We first consider the stationary small noise limit

at high copy numbers [20, 21] where the nor-
malized co-variance matrix with elements Σij =
Cov(xi, xj)/(〈xi〉〈xj〉) satisfies the Lyapunov equation

AΣ + ΣAT +D = 0 , (2)

Here A is the Jacobian matrix for the dynamics of the
average abundances (normalized by their steady states)
subject to small deviations, and D is the system’s diffu-
sion matrix. For the class of systems defined in Eq. (1),
Aii = −1/τi while the off-diagonal entries are unknown
parameters that depend on the unspecified control func-
tions. Because here each reaction only changes one com-
ponent, the diffusion matrix is diagonal with entries (see
SM [19]):

Dii =
2

τi

〈si〉
〈xi〉

, (3)

where 〈si〉 = (〈bi〉 + 1)/2 is the average jump size for
component Xi. Solving Eq. (2) for the normalized stan-
dard deviations σ̄i :=

√
Σii, which we will colloquially

refer to as ‘noise’ throughout this paper, in terms of the
unknown covariance Σ12 gives

τ1σ̄
2
1

(
σ̄2
2 −
〈s2〉
〈x2〉

)
+ τ2σ̄

2
2

(
σ̄2
1 −
〈s1〉
〈x1〉

)
= (τ1 + τ2) Σ2

12.

(4)
Because the right hand side of Eq. (4) cannot be negative
we must have

σ̄i >
√
〈si〉/〈xi〉 for at least one i , (5)

where
√
〈si〉/〈xi〉 corresponds to the noise without con-

trol, i.e., for constant rates. Thus no such system could
suppress noise in both components below their uncon-
trolled levels.

For any finite ratio of life-times, the small-noise ap-
proach further predicts that the normalized standard de-
viation in X1 cannot be lower than a factor

√
1 + τ1/τ2

below the noise when the rates are constant, and vice
versa for X2. In fact, when one component is arbitrar-
ily short-lived, so that there can be no limit on noise
suppression in the other component, the fast component
equilibrates to conditional Poisson distributions for each
value of the slow component, even for nonlinear functions
f and g. The law of total variance—without small-noise
approximations—then states (see SM [19]) that Eq. (5)
must again hold. Thus the conjecture holds asymptot-
ically both in the high abundance limits regardless of
time-scales and for separated time scales regardless of
abundances. For intermediate and low abundances with-
out time-scale separation, the exact analytic methods
previously developed to identify bounds on stochastic
reaction systems [6, 7, 9] were not helpful for this sys-
tem. We therefore performed systematic numerical ex-
plorations.

First we used the exact Gillespie algorithm [22] to real-
ize the system in Eq. (1), using a wide range of functions
f(x2), g(x1) and parameters τi, including combinations
of sharp and damped functions, ratios of polynomials,
exponential functions, etc (see SM [19]). For all ratios of
life-times τ1/τ2, some systems could get extremely close
to the bounds in Eq. (4) but we found none that vio-
late them, suggesting that the inequality is tight and a
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real physical limit on the system for all nonlinear func-
tions (see Fig. 1C). However, it is only possible to sample
a subset of possible functions f(x2) and g(x1), as these
lie on an infinite-dimensional Hilbert space. We there-
fore also systematically explored systems in the low copy
number regime with less than five or less than ten copies
of each type, i.e., with only five or ten values of f(x2) and
g(x1) respectively. This allows us to more densely sample
the space of possible functions (see SM [19]). We consid-
ered 106 reaction systems of each type, using many differ-
ent types of functions, including non-monotonic ones and
randomly generated values. Again, many examples get
exceedingly close to the predicted bound but none break
it. Though short of an exact and general proof, this
combination of analytical limits and systematic numeri-
cal explorations support the conjecture of a hard trade-off
for all systems in which two components directly control
each other. Non-stationary systems can of course start
inside the Poisson square, but that would only reflect
the choice of initial conditions, not an ability to suppress
noise. The physically more relevant question is whether a
system moving from one stationary state to another—due
to some change in parameters or rate functions—could
temporarily move through the Poisson square. This is
indeed possible for some special types of systems, but we
could only find very minor violations through the upper
right corner of the Poisson square (see SM [19]), poten-
tially suggesting bounds even on non-stationary dynam-
ics.

Next we investigate if these principles generalize to
multi-component systems. First we consider feedback
loops in which the components control each other in a
ring-like structure (Fig. 2A) where the reactions of com-
ponent Xi for i = 2, . . . , N are given by

xi
ri(xi−1)−−−−−−−→ xi + bi xi

xi/τi−−−−−−−→ xi − 1 , (6)

and X1 has production rate r1(xN ) and decay rate x1/τ1.
This describes systems in which feedback acts indirectly,
through a cascade of reactions. The same combination of
approaches as above suggests that in any N -component
feedback ring structure as defined in Eq. (6), only a single
component can exhibit fluctuations below Poisson noise
(Fig. 2B), and that any pair of components Xi, Xj are
constrained by

1

τi

(
σ̄i√
〈si〉/〈xi〉

)−2
+

1

τj

(
σ̄j√
〈sj〉/〈xj〉

)−2
6

1

τi
+

1

τj
.

(7)
For N = 3 this follows from the Lyapunov approach
above Eq. (2) in the high copy number limit. The corre-
sponding A matrix then has the following structure:

A =

−1/τ1 0 A13

A21 −1/τ2 0
0 A32 −1/τ3

 , (8)
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FIG. 2. Trade-offs between pairs of components within a feed-
back ring. Two-component mutual control systems can be
generalized to a multi-component control feedback loop in
which N -components affect the production rate of the next
component within a ring as defined by Eq. (6). A) Schematic
illustration of a ring-like connection feedback loop for N = 6.
B) Numerical support that feedback rings can only suppress
noise in at most one component. Considering stochastic real-
izations of control systems within the class defined by Eq. (6)
for N = 3 we find numerically that the bounds derived in the
high copy number regime constrained all systems regardless
of noise levels and copy numbers. Each dot corresponds to the
numerical data for a given system with a specified set of con-
trol functions and parameters (see SM for numerical details
[19]). We find numerical confirmation that no 3-component
feedback ring can suppress fluctuations in more than one com-
ponent. Note, that lower dimensional feedback loops are spe-
cial cases of the higher dimensional ones in which some com-
ponents are infinitely fast with τi → 0. (See Movie S1 in the
SM [19])

where A12, A32 and A13 again depend on the unspeci-
fied control functions. For stability, all eigenvalues of A
should have negative real parts, in which case a unique
positive definite solution of Eq. (2) exists [23]. Solv-
ing Eq. (2) is then inconclusive with respect to show-
ing Eq. (7), since the stability criterion cannot be di-
rectly applied. Therefore, instead of solving Eq. (2) for
all (co)variances, we looked for a symmetric matrix ψ
satisfying the following two conditions:

tr[ψ(AΣ + ΣAT )] = A11 +A22 (9)

ψ11 > 1/Σ11, ψ22 > 1/Σ22, ψ33 > 0 . (10)

If such a ψ exists, the bound Eq. (7) can be shown to fol-
low for i, j = 1, 2, and by symmetry the same inequality
would exist for all i 6= j. For matrices with the structure
of Eq. (8) we can show that such ψ indeed exists uniquely
(see SM [19]). Then left-multiplying by ψ in Eq. (2) and
taking the trace—with the same diagonal diffusion ma-
trix D as in Eq. (3)—we have Eq. (7) for i, j = 1, 2.
However, this approach does not work for N > 4 since ψ
then is not uniquely determined, but for such higher N
the conclusion is still supported by a similar systematic
numerical approach as above. All components except one
would then become sacrificial components to reduce noise
in a chosen one.

Next, we consider systems in whichN components con-
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trol each other’s production rates in arbitrary topologies
as illustrated in Fig. 3A and defined by

xi
ri({xj :j 6=i})−−−−−−−→ xi + bi xi

xi/τi−−−−−−−→ xi − 1 . (11)

The production rate of each component is allowed to be
an arbitrary function of all other components and the
degradation of component number i is assumed to be a
first-order reaction with half-life τi as above. Because it is
rare that components directly affect their own production
rates, as opposed to using chemical intermediates, this
should apply to a large number of systems. We then
combine the trace

tr[Σ−1(AΣ + ΣAT +D)] = 0 . (12)

with the general constraint that Σ must always be posi-
tive semi-definite so (Σ−1)ii > 1/Σii (see SM [19]). Then
since tr[Σ−1D] =

∑
iDii(Σ

−1)ii >
∑
iDii/Σii, we ob-

tain:

N∑
i=1

1

τi

(
σ̄i√
〈si〉/〈xi〉

)−2
6

N∑
i=1

1

τi
. (13)

This result for the high copy number limit, which again
is supported by systematic numerical explorations at low
copy numbers, generalizes the Poisson Square into an N -
dimensional Poisson hypercube, meaning that at least
one component must display larger fluctuations than
Poisson in the absence of control (Fig. 3B). While the
general feedback topology can improve noise suppression
compared to rings, it thus seems impossible to suppress
noise in all components, regardless of topology. As above
the result also generalizes to production in distributed
bursts.

Similar results appear to apply more broadly. For the
arbitrary case in which any component can affect the pro-
duction or degradation rates of all components including
their own

xi
r+i (x1,...,xN )
−−−−−−−→ xi + bi xi

r−i (x1,...,xN )
−−−−−−−→ xi − 1 . (14)

we find [19]) that

N∑
i=1

1

τi

(
σ̄i√
〈si〉/〈xi〉

)−2
6

N∑
i=1

Hi

τi
. (15)

where Hi = ∂ ln(r−i /r
+
i )/∂ ln(xi) are constants that de-

scribe how component Xi controls its own production
or degradation rates directly [21]. For example, if one
component is produced with rate ∼ xmi and degraded
with rate ∼ xni , then Hi = n − m. For all systems
in which the linearized system is stable, the stability
criterion implies that the right hand side in Eq. (15)
is positive. Thus for any given level of self-control in
such systems, there is again a limit on the noise suppres-
sion that can be achieved for all components. To our
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FIG. 3. Trade-off in N-component control networks. Here we
consider N -component control structures of arbitrary topol-
ogy where each component is allowed to affect any other
component’s production rate (but not its own) as defined in
Eq. (11). A) Schematic illustration of a maximally connected
control network for N = 6. Since we leave all reaction rates
unspecified (here and throughout the paper) any specific re-
alization of this class may have rates that depend on only a
subset of the other components and may thus be much more
sparsely connected than the above illustration, in particular
the ring-like feedback systems of Fig. 2 are a subset of the
more general class considered here. B) Here we present nu-
merical support for the constraint of Eq. (13) in the N = 3
case. We generated an extensive set of numerical realizations
of arbitrarily nonlinear 3-component feedback systems with
arbitrary life-times and abundances. Again, we could not
find any system that violated the bound derived in the high
copy number limit, and conclude that the ‘Poisson Cube’ is
inaccessible by any three component feedback systems.

knowledge the most common reasons for H 6= 1 is self-
replication or autocatalysis, where the production rate
increases with x and the corresponding H-value there-
fore is closer to zero, or saturated enzymatic degrada-
tion, where the death rate per molecule decreases with
x and the H-value again is closer to zero. Those mech-
anisms make it even harder to suppress noise. For auto-
dimerization, where two monomers form a dimer and the
degradation rate is approximately proportional to x2, the
H can double from 1 to 2. However, even this mechanism
would only marginally reduce the noise, both because the
change in H is moderate and because two molecules are
now eliminated in the same reaction, which increases the
diffusion terms in D. Thus we believe the principle that
chemical reaction networks require some components to
fluctuate significantly applies quite broadly.

So far we assumed that each reaction changes abun-
dances in integer steps, and only for one component at
a time, as e.g. transcription or translation events change
either the number of mRNA or protein respectively, but
not both simultaneously. However, similar results can be
derived for reaction systems where the reactions change
more than one kind of component, such as systems with
complex formation or conversion reactions. The diffu-
sion matrix D then has non-zero off-diagonal entries and
the relation tr[Σ−1D] =

∑
iDii(Σ

−1)ii behind Eq. (13)
no longer holds. However, for stable systems where all
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Hi > 0, the relative noise suppression compared to the
non-interacting system is still bounded by the quadrant
of a hypersphere:

N∑
i=1

(
σ̄i√

〈si〉/(Hi〈xi〉)

)2

> 1 , (16)

where
√
〈si〉/(Hi〈xi〉) is the noise of the non-interacting

system. For example, adding a co-production event
to our initial example for X1 and X2 in Eq. (1),
e.g. {x1, x2} −→ {x1 +1, x2 +1}, would shrink the inac-
cessible region from the Poisson square of Eq. (15) into
a quadrant of a circle with unit radius (see SM for de-
tails [19]). An intuitive reason is that when feedback acts
via a low-copy component, intrinsic noise in that compo-
nent makes control less reliable. With stoichiometrically
coupled production reactions, such signalling noise is re-
duced, but only to some extent.

Summary.—Recent studies have identified many im-
portant constraints on the behavior of stochastic sys-
tems in terms of energy-related properties, such as en-
tropy production etc. [8–10, 24–27]. However, many pro-
cesses in biology are so strongly driven that energetic
constraints cannot easily be invoked. For example, pro-
tein degradation is not protein synthesis in reverse, but
a separate energy-consuming process. Those processes
can still be subject to other types of constraints though
[6, 28], e.g. determined by the topology of the reaction
network or individual reaction steps that cause a loss
of information transfer. Indeed, when we apply our ap-
proach to systems that are close to thermodynamic equi-
librium we identify very severe bounds (see SM for details
[19]), but regardless of energy dissipation we also demon-
strate broad trade-offs between fluctuations in different
components of stochastic reaction networks, set only by
network topology. Specifically we find that molecular
networks may require ‘sacrificial’ components with large
noise to ensure that others function precisely, which in
turn may help explain why cells have so many dedicated
control molecules and why so many of them appear to
fluctuate substantially [17]. Our systematic numerical
explorations further suggest that the analytical asymp-
totic limits identify bounds that are both exact and tight
for all parameters and rate functions. Together with the
observation that numerous such bounds exist for different
topologies, this may suggest the existence of more gen-
eral rules for stochastic reaction networks far from equi-
librium, which perhaps could be collectively captured by
a different perspective from what we can provide.
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