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We evaluate the rates of energy and phase relaxation of a superconducting qubit caused by stray
photons with energy exceeding the threshold for breaking a Cooper pair. All channels of relaxation
within this mechanism are associated with the change in the charge parity of the qubit, enabling the
separation of the photon-assisted processes from other contributions to the relaxation rates. Among
the signatures of the new mechanism is the same order of rates of the transitions in which a qubit
loses or gains energy, in agreement with recent experiments. Our theory offers the possibility to
characterize the electromagnetic environment of superconducting devices at the single-photon level

for frequencies above the superconducting gap.

Introduction — The electromagnetic environment is
known to affect the operation of any superconducting
device based on tunnel junctions [1-3] through photon-
assisted tunneling [4]. The spectral content and origin of
this environment are not known a priori. This is why phe-
nomenological approaches, such as the P(E)-theory [5],
are conventionally used to model (but not explain) the
environment. In this work, we give a route towards its
characterization at the single-photon level. Namely, we
consider the photon-induced relaxation of superconduct-
ing qubits in the circuit-QED setting [6-11]. We find that
measuring it actually opens — with the help of our theory
— an experimental path for acquiring information on the
environment, focusing on its high-frequency component.

When a Josephson junction absorbs a photon with en-
ergy hw > 2A capable of breaking a Cooper pair, a sin-
gle electron is transferred across the junction (here A
is the BCS energy gap). If the junction is a part of a
superconducting qubit, such e-jump can be detected by
monitoring the charge parity of the device [12-16]. An e-
jump may also result in a transition to a different qubit
state, and we evaluate the rates of all transitions that
change charge parity. We find that the transition rates
for the photon-assisted e-jumps differ qualitatively from
those initiated by steady-state quasiparticles residing in
the electrodes [17-23]. The rates thus provide a clear
fingerprint of the absorbed photon. Moreover, in the
popular transmon design, a small Josephson junction is
located inside a microwave cavity. Photons are brought
inside the cavity through coaxial cables and their electric
field is concentrated at the junction. Therefore, a single
photon turns out to be way more effective than a resident
quasiparticle in causing the e-jumps, and in turn causing
energy and phase-coherence relaxation associated with
them, in state-of-the art devices. Recent experiments
performed with transmons have directly correlated qubit
transitions with e-jumps [13, 15]. Our theory explains
the experimental findings [15].

Photon-assisted e-jump rates — The role of quasi-

particles in an elementary superconducting qubit is cap-
tured by the electronic Hamiltonian

Ho = H, + Hy, + Hr. (1)

The first term here describes the quantum dynamics of
the superconducting phase difference across a Josephson
junction,

H, =4Ec(N —ny)* — Ejcos$ + %EL(gé —27®, /D)2,

A (2)
where ¢ and N = —id/dp are canonically conjugate
quantum variables describing the superconducting phase
difference and the number of Cooper pairs that tunneled
across the junction, respectively; E; and 4FEc are the
Josephson and charging energies associated with these
two variables; ny is a dimensionless gate voltage that ac-
counts for offset charges. The inductive shunt of a flux-
onium [24] is described by the last term in Eq. (2); its
presence allows one to use an external magnetic flux ®,
to tune the qubit levels (P is the superconducting flux
quantum). A transmon does not have a shunt, £, = 0.
Our theory is equally applicable to any device. The eigen-
states of Eq. (2) are the qubit states |n) with energy F,,.
The second term in Eq. (1) describes quasiparticles re-
siding in the superconducting leads,

Hyp = erbl,buo + > i, Apo- (3)
ko po

Here Gy, is a fermionic annihilation operator for a Bo-
goliubov quasiparticle in orbital state k and with spin o
in one of the leads, 4,, plays a similar role for a quasi-
particle in the other lead (o = + for up and down spins);
the quasiparticle energy e = \/W is expressed in
terms of the normal-state electron energy &, measured
from the Fermi level. Finally, the third term in Eq. (1)
describes electron tunneling across the junction,

Ar=Y" {tew’/ 24, epo + H.c.} +Ejcosg; (4)

kpo



it accounts for the coupling between ¢ and quasiparticle
degrees of freedom. Here the tunnel matrix element ¢ is
related to E; through the Ambegaokar-Baratoff relation,
Ej = grA/4, where gy = 4m2v¢|t|? is the conductance of
the junction in the normal state, in units of e?/mh, and
vg is the normal density of states per spin. The opera-
tor Ary = UpOke + avkdzﬁ (with & = —o) annihilates an
electron in one of the leads, and ug, vy = /(1 £ &k /ck)/2
are BCS coherence factors (relations for the electron an-
nihilation operator é,, in the other lead are similar). The
last term in Eq. (4) is included to avoid double-counting
the Josephson energy term appearing in Eq. (2) [19].

The coupling of the electronic degrees of freedom to
an electromagnetic mode in the cavity is described by
the Hamiltonian

H = Hcav + ﬁel 5 I:Icav == h/wulsii)l/a (5)

provided that we make the substitution
@ — P+ ¢ (b, + b)) with ¢, = 2eld,/(hw,) (6)

in f[el. Here l;,, is the bosonic annihilation operator for a
cavity mode v with frequency w, and operator of the elec-
tric field €(r) = —i&, (r)(b, —b},). The “zero-point fAluctu-
ation” of the phase, ¢,, and voltage drop, U,,, across the
Josephson junction are proportional to the electric field
E,(r); for definiteness, we relate U, to the field value
at the junction, U, = d,&,(0). In general, the effective
length d, depends not only on the specific geometry of
the qubit, but also on the frequency w,. Inserting the
substitution rule (6) into Eq. (4) and accounting for the
weakness of coupling (¢, < 1), we express the Hamilto-
nian of the quasiparticle-photon-qubit interaction as

SHp = "z’” v (b, + ) (f/1 + vg) +He, (7)
= tz ( 2upuy, + e “’/%kvp) &y, Apos
kpo
Vg = tz o (ei‘ﬁ/Qukvp — e_i“s/kaup) QLU’};;,.
kpo

Treating SHr as a perturbation to I:IO = ﬁ¢+ﬁqp+ﬁcav,
and assuming a vanishing occupation of the quasiparticle
states, so to neglect ‘71, we can use the Fermi’s Golden
Rule to evaluate the rate for absorbing a cavity photon
while changing the qubit state from n to m,

21 (&, 2 P 2
Fon =5 (%) Cltvacmlan i alvac P (8)
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where |vac,n) = |vac) ® |n) is the product of the BCS
ground state and the qubit state. Evaluating the sums
in Eq. (8), we can express the e-jump rates (8) as

hwl/ + En - Em
A) ®)

. Sa ha}y‘f'En _Em
H(nlsin £ jm) s, (A)}
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with the common characteristic scale
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for the photon absorption. Quasiparticle properties are
represented by the dimensionless structure factor func-
tions having a threshold at fiw/A =z = 2,

yy £1

/
/ du/ du\/i\/T —y=1)

(1)
see Fig. 1. Their asymptotes are: S_(x) = (7/2)(z — 2),
Si(r) =7+ S_(r)/2 at x —2 < 2 and Si(x) =~ z at
x > 2. The prefactors of S (z) inside the brackets of
Eq. (9) are matrix elements for the transitions between
qubit states. While these matrix elements also enter into
e-jump rates due to residual quasiparticles, the corre-
sponding structure factor functions are different [23].

At E; > E¢, Eq. (2) describes a weakly anharmonic
oscillator whose phase displays small quantum fluctua-
tions around the classical phase ¢y. At finite Ey, it may
be tuned away from zero by an external flux ®., and
found as the solution of equation FEjsingg + Er(pg —
2n®./®y) = 0, which yields the minimum of (classi-
cal) energy. In the harmonic approximation, Eq. (2) re-
duces to Hl, = 4Ec(N — ny)? + E;(¢ — ¢0)?/2 with
E 7 = Ejcospg + Er. The weak anharmonicity singles
out the ground and excited states of the qubit. Retaining
only the lowest-order correction in (Ec/Ej)'/?, one ob-
tains fiwg, ~ V/8E;Ec—Ec for the corresponding transi-
tion frequency. Evaluation of the qubit matrix elements
in Eq. (9) within the leading order [25] in (E¢/Ej)Y/?
yields
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FIG. 1. Quasiparticle structure factors Sy (solid line) and S_—
(dashed line) as a function of energy at hw > 2A.

The po-dependence of the rates (12) reveals the interfer-
ence between quasiparticles crossing the junction in the
photon-absorption process. It is reminiscent of the cos ¢-
effect in the dissipative Josephson current [26] and flux-
dependent fluxonium relaxation rates [27]. At Ep # 0,
wo1 is independent of ng4, which can be gauged out from
H{P. Sensitivity of the qubit energy levels to the gate
voltage is useful for separating out the rates of various e-
jump processes [13, 15]. The yo-dependence of the rates
(12) may be investigated in a device retaining such sen-
sitivity, e.g., in a flux qubit [14, 28].

Let us make several observations. First, at large fre-
quency, fuw, > 2A, the transition rates are independent
of ¢g, and we find T'y1 /T'10 =~ 1 and

Too/T1o = (8E;/Ec)"/?. (13)
Notably, the rates I'gg, I'11 in which a qubit state does
not change are substantially larger than I'g; and T'qg.
Furthermore, at ¢y = 0 and hwy; < A we find

1—FL(JJ01/A<F01/F10<1 (14)

at any frequency above the threshold, hw, > 2A + hwp; .
Finally, at fw, close to the threshold, the large factor in
Eq. (13) is compensated by a small factor S_(z), result-
ing in:

~ \1/2
Too 2F; fiw,,
. -2 —2A <A (1
T (Ec> <A ) at hw, < (15)

The characteristic rate I', of Eq. (10) depends on the
qubit parameter d,, and the amplitude of the quantized
electric field &,. To estimate the two, we notice that, in
conventional 3D designs [8], the superconducting circuit
is oriented along the shortest direction of a 3D electro-
magnetic cavity, say with a width L. along z-direction
much smaller than the characteristic transverse sizes,
L,,Ly > L,. Therefore, the electric field at frequencies
smaller than 7¢/L, (c is the light velocity) is expressed
in terms of the TE modes,

v

(16)

and is independent of z, apart from the vicinity of the
qubit and rf input/output connectors constituting per-
turbing metallic boundary conditions inside the cavity.
Furthermore, &, (z,y) is a real solution of the equation
W) + (07 + )] & (2,y) = 0 (17)
at frequency w, in the transverse (x,y)-plane, comple-
mented with the appropriate non-radiative boundary
conditions defined by the cavity walls and the above men-
tioned perturbations in the cavity. Because the perturba-
tions occupy a tiny fraction of the cavity volume, we may
disregard them in the normalization condition to obtain
€2 = 2rhw, /(AL). (18)
Here £2 = (1/A) [ d?r&2(x,y) and A is the cavity’s trans-
verse area.

Given the presence of perturbations, we expect that
the boundary conditions associated with Eq. (17) yield
a chaotic behavior for its solutions [29]. The spacing
of eigenfrequencies around a given frequency w, is esti-
mated as dw = ¢?/(Aw,). Then, the amplitude of the
electric field at the qubit position will fluctuate from
mode to mode. We may use the random matrix the-
ory (RMT) [30] to describe these fluctuations in a range
of frequencies of the order ¢/v/A around a frequency w,
such that ¢/vA < w, < we/L,, where we/L, is the cutoff
frequency for the TM modes. Therefore, the amplitude
of the electric field at a given position is given by the
Porter-Thomas distribution in the orthogonal ensemble,

P(E))dE; = (2mEL(E7)) /% exp(=£]/2(E]))dEy, (19)



where the brackets denote the ensemble average. For the
modes v that can be described with RMT, the spatial
and ensemble averages equal each other, (£2) = £2.

The effective length d,, which characterizes the cou-
pling between the superconducting circuit and the elec-
tric field, is frequency-independent in a wide frequency
range. This range is limited by the requirement that
the size of the superconducting circuit is smaller than
the wavelength of the photon A\, = 27¢/w,, while induc-
tance L; = h?/(4e?E) of the Josephson junction is high
enough to treat it as an open circuit, L jw, > Zy,. (here
Zyac 1s the vacuum impedance). For a typical design,
the frequency of stray photons with Aw ~ 2A falls below
the upper limit set by the former condition; the much
lower transition frequency wp; exceeds the lower limit

set by the latter condition, as long as \/EC/EJ >«

(here o = €% /hc is the fine structure constant). We may
extract the frequency-independent d, = d from the dis-
persive shift measured at the resonator’s principal mode
frequency w,., which is close to wpi. Indeed, ignoring the
role of quasiparticles and projecting the Hamiltonian (5)
onto the lower-energy states of the qubit yields

H = huoy b, + ’”; 0.+ hg(b, + b)oa,  (20)
where

(21)

1 - 2ed€&
= —(2EcE3)V/4A =
9= 5 QEcE) "0

r
is the “vacuum Rabi frequency” [31], and o, 0, are Pauli

matrices acting in the two-dimensional space of qubit
states. Combining Eqgs. (10), (18), and (21) then yields

4w By (53<x,y>)1 £2(z,y)

r, = (&l Wy (e
T Wo1 Wy EJ 57? 53

where (z,y) is the vicinity of qubit location. Using the
standard expression for the principal mode in a rectangu-
lar cavity, and assuming that the qubit is positioned near
the cavity’s center, allows to estimate £2(z,y)/E2 ~ 4.
The ensemble-averaged value of Eq. (22) is then

A 192 hw, Ej
r)=-—-T, To=-Y .
) 0 T Twa A E;

L (23)

In the two-level approximation for the qubit states, g
is related to the dispersive shift of the qubit transition
frequency, x = ¢?/|w, — wo1|. Equations (12) and (23)
express the main result of this work.

e-jumps in transmons — From now on, we specify
the discussion to transmons, such that E; = E; and
wo = 0. There are two aspects in which the rates of
charge-parity transitions caused by photons differ quali-
tatively from those caused by the quasiparticles resident
in the qubit. First, it is the approximately equal rates of
transitions accompanied by the qubit energy loss or gain,

4

To1 ~ Ty, see Eq. (14). To the contrary, the resident
quasiparticles mechanism [23] leads to I'g;<I'10, even if
their energy distribution is out of equilibrium [32]. Sec-
ond, the ratio Tg/T'19 is large, see Eq. (13). In contrast,
the quasiparticle tunneling mechanism yields a paramet-
rically smaller result [23], differing from Eq. (13) by an
additional factor (hwo1Typ/TA%)Y/2 < 1; here T, < A
is the effective temperature of quasiparticles.

A single photon with energy hw > 2A is much more
effective in causing decoherence than the residual quasi-
particle density in a typical setting. This efficiency is
a byproduct of the efficient coupling between the su-
perconducting circuit and the electromagnetic cavity in
the transmon design. The quasiparticle mechanism [17]
yields T'{f = xqp/2Awo1/72h, where zqp = nqp/(200A)
is the quasiparticle density in units of the density of
Cooper pairs. We compare the effectiveness of a single
photon with that of quasiparticles by equating (I'19) =

'y, and finding the corresponding :vgg,

[hwor AN,
xqh = Vanta [ =02 (24)

For a typical device [31], this yields ng ~ 5x107° much
larger than the typical residual density [8] of < 1076.

Comparison with experiment — Photon-assisted e-
jumps provide a natural explanation for the results of
the recent experiment [15]. In [15], the rates of e-jumps
accompanied by qubit excitation and relaxation, respec-
tively, were approximately equal each other. This ob-
servation is consistent with Eq. (14) and hints at a finite
probability n,, of finding a high-energy photon in the cav-
ity. Furthermore, we may associate the observed rate of
e-jumps occurring without the qubit leaving the ground
state with the rate n,Ig9, while the above-mentioned
measured rate of 1 — 0 transitions is associated with
n, T, cf. Egs. (12a) and (12¢) with ¢y = 0. Compar-
ing the ratio of the two with the experimental data, we
obtain the relation T'gg/T'19 ~ 4.1, which we treat as an
equation for finding the characteristic photon frequency.
Using the qubit parameters [31], we find w, ~ 2.8A/h.
Then, inserting this frequency into the ratio of rates (12b)
and (12c) yields Tp1/T19 &~ 0.97, which is close to the
observed ratio between qubit relaxation and excitation
rates (accompanied by e-jumps).

To assess the individual rates (rather than their ra-
tios), we assume the incoming photons belong to a narrow
(compared to w,) bandwidth around the frequency w,.
We also assume this bandwidth is wide compared to the
mean-frequency spacing dw, which allows us substitute
T, in Egs. (12) by its ensemble-averaged value (23). [In
the opposite case of a narrow frequency bandwidth < dw,
all rates (12) would fluctuate from mode to mode ac-
cording to the Porter-Thomas distribution (19); we note
also that frequencies fiw, ~ 2A for the parameters [31]
are at the margin of validity of the used-above condition




w, < me/L,.] Inserting the device parameters [31] into
Eq. (23), we find Fgl ~ 0.6 us. The measured e-jump
rates are much lower. This indicates that the measured
rates are actually controlled by the probability for a pho-
ton to enter the cavity. The sum of all measured e-jump
rates then yields the rate with which photons appear in
the cavity, dn, /dt = 1/Tp with Tp = 77 us [15]. Using
this value, qubit-state probabilities Py ~ P; ~ 1/2, and
the estimated-above I'y in equation

n,m=0,1

we find the photon occupation factor n, ~ 1072,

Alternatively, we may consider e-jumps caused by pho-
tons coming into the cavity from outside not within a
narrow frequency band, but a distribution corresponding
to a thermal bath. In this case, the magnitude of e-
jump rates depends on the coupling parameters between
the cavity modes and the outside bath, which may de-
pend on the frequency of incoming photons. Neglecting
such dependence, the poorly known coupling parameter
cancels out in the ratios between rates. In the follow-
ing estimates, we consider the effect of external irra-
diation from a thermal bath at temperature 7},. Con-
volving the frequency-resolved rates (12) with the Bose-
Einstein distribution and density of modes, and assuming
hwor, Ty, < 2A we find:

[2F; T

FOQ/F]O ~ i} exp(—hwm/Tb), (26&)
Ec A

F01/F10 ~ exp(—2hw01/Tb). (26b)

Let us note a poor agreement of the data [15] with
such a uniformly-attenuated thermal photons model. In-
deed, equating Eq. (26a) with the corresponding ob-
served ratio, together with device parameters [31], yields
Ty, ~ 0.68A. Inserting this temperature into Eq. (26b)
then yields ratio T'o;/T10 = 0.77, which is about 30%
lower than the observed one. Therefore, we favor the
first explanation, involving photons in a relatively nar-
row frequency band.

Conclusion — We have identified a decoherence chan-
nel associated with an event of photon-assisted electron
tunneling through a Josephson junction in a supercon-
ducting qubit. This process results from breaking of
a Cooper pair by a stray photon with energy exceed-
ing 2A, the electric field of which is concentrated at a
high-impedance junction. The qubit transition rates ac-
companying these photon-assisted e-jumps are markedly
different from those caused by residual quasiparticles,
and are consistent with the measured rates in Ref. [15],
where charge-parity switches were equally likely to ex-
cite or relax the transmon. Interestingly, we find that
the contribution per high-frequency photon in the cavity
to qubit decoherence (through energy relaxation) is sim-
ilar to that of low-frequency photons (through shot-noise

dephasing [33]). However, this similarity depends on the
particulars of the present implementation of the qubit-
cavity system. Unsurprisingly, our results reinforce the
importance of protecting superconducting qubits from
electromagnetic radiation at all frequencies. Addition-
ally the control of processes unveiled in this article may
open a perspective for the design of single-photon mi-
crowave detectors for frequencies above the gap.
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