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We evaluate the rates of energy and phase relaxation of a superconducting qubit caused by stray
photons with energy exceeding the threshold for breaking a Cooper pair. All channels of relaxation
within this mechanism are associated with the change in the charge parity of the qubit, enabling the
separation of the photon-assisted processes from other contributions to the relaxation rates. Among
the signatures of the new mechanism is the same order of rates of the transitions in which a qubit
loses or gains energy, in agreement with recent experiments. Our theory offers the possibility to
characterize the electromagnetic environment of superconducting devices at the single-photon level
for frequencies above the superconducting gap.

Introduction – The electromagnetic environment is
known to affect the operation of any superconducting
device based on tunnel junctions [1–3] through photon-
assisted tunneling [4]. The spectral content and origin of
this environment are not known a priori. This is why phe-
nomenological approaches, such as the P (E)-theory [5],
are conventionally used to model (but not explain) the
environment. In this work, we give a route towards its
characterization at the single-photon level. Namely, we
consider the photon-induced relaxation of superconduct-
ing qubits in the circuit-QED setting [6–11]. We find that
measuring it actually opens – with the help of our theory
– an experimental path for acquiring information on the
environment, focusing on its high-frequency component.

When a Josephson junction absorbs a photon with en-
ergy ~ω > 2∆ capable of breaking a Cooper pair, a sin-
gle electron is transferred across the junction (here ∆
is the BCS energy gap). If the junction is a part of a
superconducting qubit, such e-jump can be detected by
monitoring the charge parity of the device [12–16]. An e-
jump may also result in a transition to a different qubit
state, and we evaluate the rates of all transitions that
change charge parity. We find that the transition rates
for the photon-assisted e-jumps differ qualitatively from
those initiated by steady-state quasiparticles residing in
the electrodes [17–23]. The rates thus provide a clear
fingerprint of the absorbed photon. Moreover, in the
popular transmon design, a small Josephson junction is
located inside a microwave cavity. Photons are brought
inside the cavity through coaxial cables and their electric
field is concentrated at the junction. Therefore, a single
photon turns out to be way more effective than a resident
quasiparticle in causing the e-jumps, and in turn causing
energy and phase-coherence relaxation associated with
them, in state-of-the art devices. Recent experiments
performed with transmons have directly correlated qubit
transitions with e-jumps [13, 15]. Our theory explains
the experimental findings [15].

Photon-assisted e-jump rates – The role of quasi-

particles in an elementary superconducting qubit is cap-
tured by the electronic Hamiltonian

Ĥel = Ĥϕ + Ĥqp + ĤT . (1)

The first term here describes the quantum dynamics of
the superconducting phase difference across a Josephson
junction,

Ĥϕ = 4EC(N̂ − ng)2 − EJ cos ϕ̂+
1

2
EL(ϕ̂− 2πΦe/Φ0)2,

(2)
where ϕ̂ and N̂ = −id/dϕ̂ are canonically conjugate
quantum variables describing the superconducting phase
difference and the number of Cooper pairs that tunneled
across the junction, respectively; EJ and 4EC are the
Josephson and charging energies associated with these
two variables; ng is a dimensionless gate voltage that ac-
counts for offset charges. The inductive shunt of a flux-
onium [24] is described by the last term in Eq. (2); its
presence allows one to use an external magnetic flux Φe
to tune the qubit levels (Φ0 is the superconducting flux
quantum). A transmon does not have a shunt, EL = 0.
Our theory is equally applicable to any device. The eigen-
states of Eq. (2) are the qubit states |n〉 with energy En.
The second term in Eq. (1) describes quasiparticles re-
siding in the superconducting leads,

Ĥqp =
∑
kσ

εkα̂
†
kσα̂kσ +

∑
pσ

εpγ̂
†
pσγ̂pσ. (3)

Here α̂kσ is a fermionic annihilation operator for a Bo-
goliubov quasiparticle in orbital state k and with spin σ
in one of the leads, γ̂pσ plays a similar role for a quasi-
particle in the other lead (σ = ± for up and down spins);
the quasiparticle energy εk =

√
ξ2
k + ∆2 is expressed in

terms of the normal-state electron energy ξk measured
from the Fermi level. Finally, the third term in Eq. (1)
describes electron tunneling across the junction,

ĤT =
∑
kpσ

[
teiϕ̂/2â†kσ ĉpσ + H.c.

]
+ EJ cos ϕ̂; (4)
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it accounts for the coupling between ϕ̂ and quasiparticle
degrees of freedom. Here the tunnel matrix element t is
related to EJ through the Ambegaokar-Baratoff relation,
EJ = gT∆/4, where gT = 4π2ν2

0 |t|2 is the conductance of
the junction in the normal state, in units of e2/π~, and
ν0 is the normal density of states per spin. The opera-
tor âkσ = ukα̂kσ + σvkα̂

†
kσ̄ (with σ̄ = −σ) annihilates an

electron in one of the leads, and uk, vk =
√

(1± ξk/εk)/2
are BCS coherence factors (relations for the electron an-
nihilation operator ĉpσ in the other lead are similar). The
last term in Eq. (4) is included to avoid double-counting
the Josephson energy term appearing in Eq. (2) [19].

The coupling of the electronic degrees of freedom to
an electromagnetic mode in the cavity is described by
the Hamiltonian

Ĥ = Ĥcav + Ĥel , Ĥcav = ~ων b̂†ν b̂ν , (5)

provided that we make the substitution

ϕ̂→ ϕ̂+ φν(b̂ν + b̂†ν) with φν = 2eUν/(~ων) (6)

in Ĥel. Here b̂ν is the bosonic annihilation operator for a
cavity mode ν with frequency ων and operator of the elec-
tric field Ê(r) = −iEν(r)(b̂ν−b̂†ν). The “zero-point fluctu-
ation” of the phase, φν , and voltage drop, Uν , across the
Josephson junction are proportional to the electric field
Eν(r); for definiteness, we relate Uν to the field value
at the junction, Uν = dνEν(0). In general, the effective
length dν depends not only on the specific geometry of
the qubit, but also on the frequency ων . Inserting the
substitution rule (6) into Eq. (4) and accounting for the
weakness of coupling (φν � 1), we express the Hamilto-
nian of the quasiparticle-photon-qubit interaction as

δĤT =
iφν
2

(b̂ν + b̂†ν)
(
V̂1 + V̂2

)
+ H.c., (7)

V̂1 = t
∑
kpσ

(
eiϕ̂/2ukup + e−iϕ̂/2vkvp

)
α̂†kσγ̂pσ,

V̂2 = t
∑
kpσ

σ
(
eiϕ̂/2ukvp − e−iϕ̂/2vkup

)
α̂†kσγ̂

†
pσ̄.

Treating δĤT as a perturbation to Ĥ0 = Ĥϕ+Ĥqp+Ĥcav,
and assuming a vanishing occupation of the quasiparticle
states, so to neglect V̂1, we can use the Fermi’s Golden
Rule to evaluate the rate for absorbing a cavity photon
while changing the qubit state from n to m,

Γnm =
2π

~

(
φν
2

)2∑
kpσ

|〈vac,m|α̂kσγ̂pσ̄V̂2|vac, n〉|2 (8)

×δ(~ων + En − Em − εk − εp),

where |vac, n〉 = |vac〉 ⊗ |n〉 is the product of the BCS
ground state and the qubit state. Evaluating the sums
in Eq. (8), we can express the e-jump rates (8) as

Γnm = Γν

[
|〈n| cos

ϕ̂

2
|m〉|2S−

(
~ων + En − Em

∆

)
(9)

+|〈n| sin ϕ̂
2
|m〉|2S+

(
~ων + En − Em

∆

)]

with the common characteristic scale

~Γν =
2

π

(
2eUν
~ων

)2

EJ (10)

for the photon absorption. Quasiparticle properties are
represented by the dimensionless structure factor func-
tions having a threshold at ~ω/∆ ≡ x = 2,

S±(x)=

ˆ ∞
1

dy

ˆ ∞
1

dy′
yy′ ± 1√

y2 − 1
√
y′2 − 1

δ(x− y − y′),

(11)
see Fig. 1. Their asymptotes are: S−(x) = (π/2)(x− 2),
S+(x) = π + S−(x)/2 at x − 2 � 2 and S±(x) ≈ x at
x � 2. The prefactors of S±(x) inside the brackets of
Eq. (9) are matrix elements for the transitions between
qubit states. While these matrix elements also enter into
e-jump rates due to residual quasiparticles, the corre-
sponding structure factor functions are different [23].

At EJ � EC , Eq. (2) describes a weakly anharmonic
oscillator whose phase displays small quantum fluctua-
tions around the classical phase ϕ0. At finite EL it may
be tuned away from zero by an external flux Φe, and
found as the solution of equation EJ sinϕ0 + EL(ϕ0 −
2πΦe/Φ0) = 0, which yields the minimum of (classi-
cal) energy. In the harmonic approximation, Eq. (2) re-
duces to Ĥ ′ϕ = 4EC(N̂ − ng)

2 + ẼJ(ϕ̂ − ϕ0)2/2 with

ẼJ = EJ cosϕ0 + EL. The weak anharmonicity singles
out the ground and excited states of the qubit. Retaining
only the lowest-order correction in (EC/ẼJ)1/2, one ob-

tains ~ω01 ≈
√

8ẼJEC−EC for the corresponding transi-
tion frequency. Evaluation of the qubit matrix elements
in Eq. (9) within the leading order [25] in (EC/ẼJ)1/2

yields
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Γ00 = Γ11 = Γν

[
1 + cosϕ0

2
S−

(
~ων
∆

)
+

1− cosϕ0

2
S+

(
~ων
∆

)]
, (12a)

Γ01 = Γν

√
EC

8ẼJ

[
1 + cosϕ0

2
S+

(
~ων − ~ω01

∆

)
+

1− cosϕ0

2
S−

(
~ων − ~ω01

∆

)]
, (12b)

Γ10 = Γν

√
EC

8ẼJ

[
1 + cosϕ0

2
S+

(
~ων + ~ω01

∆

)
+

1− cosϕ0

2
S−

(
~ων + ~ω01

∆

)]
. (12c)
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FIG. 1. Quasiparticle structure factors S+ (solid line) and S−
(dashed line) as a function of energy at ~ω ≥ 2∆.

The ϕ0-dependence of the rates (12) reveals the interfer-
ence between quasiparticles crossing the junction in the
photon-absorption process. It is reminiscent of the cosϕ-
effect in the dissipative Josephson current [26] and flux-
dependent fluxonium relaxation rates [27]. At EL 6= 0,
ω01 is independent of ng, which can be gauged out from
H ′ϕ. Sensitivity of the qubit energy levels to the gate
voltage is useful for separating out the rates of various e-
jump processes [13, 15]. The ϕ0-dependence of the rates
(12) may be investigated in a device retaining such sen-
sitivity, e.g., in a flux qubit [14, 28].

Let us make several observations. First, at large fre-
quency, ~ων � 2∆, the transition rates are independent
of ϕ0, and we find Γ01/Γ10 ≈ 1 and

Γ00/Γ10 = (8ẼJ/EC)1/2. (13)

Notably, the rates Γ00, Γ11 in which a qubit state does
not change are substantially larger than Γ01 and Γ10.
Furthermore, at ϕ0 = 0 and ~ω01 � ∆ we find

1− ~ω01/∆ < Γ01/Γ10 < 1 (14)

at any frequency above the threshold, ~ων > 2∆ + ~ω01.
Finally, at ~ων close to the threshold, the large factor in
Eq. (13) is compensated by a small factor S−(x), result-
ing in:

Γ00

Γ10
≈

(
2ẼJ
EC

)1/2(
~ων
∆
− 2

)
at ~ων − 2∆� ∆. (15)

The characteristic rate Γν of Eq. (10) depends on the
qubit parameter dν and the amplitude of the quantized
electric field Eν . To estimate the two, we notice that, in
conventional 3D designs [8], the superconducting circuit
is oriented along the shortest direction of a 3D electro-
magnetic cavity, say with a width Lz along z-direction
much smaller than the characteristic transverse sizes,
Lx, Ly � Lz. Therefore, the electric field at frequencies
smaller than πc/Lz (c is the light velocity) is expressed
in terms of the TE modes,

Ê = −i
∑
ν

(b̂ν − b̂†ν)Eν(x, y)ẑ, (16)

and is independent of z, apart from the vicinity of the
qubit and rf input/output connectors constituting per-
turbing metallic boundary conditions inside the cavity.
Furthermore, Eν(x, y) is a real solution of the equation[

ω2
ν + c2(∂2

x + ∂2
y)
]
Eν(x, y) = 0 (17)

at frequency ων in the transverse (x, y)-plane, comple-
mented with the appropriate non-radiative boundary
conditions defined by the cavity walls and the above men-
tioned perturbations in the cavity. Because the perturba-
tions occupy a tiny fraction of the cavity volume, we may
disregard them in the normalization condition to obtain

E2
ν = 2π~ων/(ALz). (18)

Here E2
ν = (1/A)

´
d2rE2

ν (x, y) and A is the cavity’s trans-
verse area.

Given the presence of perturbations, we expect that
the boundary conditions associated with Eq. (17) yield
a chaotic behavior for its solutions [29]. The spacing
of eigenfrequencies around a given frequency ων is esti-
mated as δω = c2/(Aων). Then, the amplitude of the
electric field at the qubit position will fluctuate from
mode to mode. We may use the random matrix the-
ory (RMT) [30] to describe these fluctuations in a range
of frequencies of the order c/

√
A around a frequency ων

such that c/
√
A� ων . πc/Lz, where πc/Lz is the cutoff

frequency for the TM modes. Therefore, the amplitude
of the electric field at a given position is given by the
Porter-Thomas distribution in the orthogonal ensemble,

P (E2
ν )dE2

ν = (2πE2
ν 〈E2

ν 〉)−1/2 exp(−E2
ν/2〈E2

ν 〉)dE2
ν , (19)
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where the brackets denote the ensemble average. For the
modes ν that can be described with RMT, the spatial
and ensemble averages equal each other, 〈E2

ν 〉 = E2
ν .

The effective length dν , which characterizes the cou-
pling between the superconducting circuit and the elec-
tric field, is frequency-independent in a wide frequency
range. This range is limited by the requirement that
the size of the superconducting circuit is smaller than
the wavelength of the photon λν = 2πc/ων , while induc-
tance LJ = ~2/(4e2EJ) of the Josephson junction is high
enough to treat it as an open circuit, LJων � Zvac (here
Zvac is the vacuum impedance). For a typical design,
the frequency of stray photons with ~ω ∼ 2∆ falls below
the upper limit set by the former condition; the much
lower transition frequency ω01 exceeds the lower limit

set by the latter condition, as long as
√
EC/ẼJ � α

(here α = e2/~c is the fine structure constant). We may
extract the frequency-independent dν ≡ d from the dis-
persive shift measured at the resonator’s principal mode
frequency ωr, which is close to ω01. Indeed, ignoring the
role of quasiparticles and projecting the Hamiltonian (5)
onto the lower-energy states of the qubit yields

Ĥ = ~ωr b̂†r b̂r +
~ω01

2
σz + ~g(b̂r + b̂†r)σx, (20)

where

g =
1

~
(2ECẼ

3
J)1/4 2edEr

~ωr
(21)

is the “vacuum Rabi frequency” [31], and σx, σz are Pauli
matrices acting in the two-dimensional space of qubit
states. Combining Eqs. (10), (18), and (21) then yields

Γν =
4

π

g2

ω01

ωr
ων

EJ

ẼJ

(
E2
r (x, y)

E2
r

)−1 E2
ν (x, y)

E2
ν

, (22)

where (x, y) is the vicinity of qubit location. Using the
standard expression for the principal mode in a rectangu-
lar cavity, and assuming that the qubit is positioned near
the cavity’s center, allows to estimate E2

r (x, y)/E2
r ≈ 4.

The ensemble-averaged value of Eq. (22) is then

〈Γν〉 =
∆

~ων
Γ0, Γ0 =

1

π

g2

ω01

~ωr
∆

EJ

ẼJ
. (23)

In the two-level approximation for the qubit states, g
is related to the dispersive shift of the qubit transition
frequency, χ = g2/|ωr − ω01|. Equations (12) and (23)
express the main result of this work.
e-jumps in transmons – From now on, we specify

the discussion to transmons, such that ẼJ = EJ and
ϕ0 = 0. There are two aspects in which the rates of
charge-parity transitions caused by photons differ quali-
tatively from those caused by the quasiparticles resident
in the qubit. First, it is the approximately equal rates of
transitions accompanied by the qubit energy loss or gain,

Γ01 ≈ Γ10, see Eq. (14). To the contrary, the resident
quasiparticles mechanism [23] leads to Γ01�Γ10, even if
their energy distribution is out of equilibrium [32]. Sec-
ond, the ratio Γ00/Γ10 is large, see Eq. (13). In contrast,
the quasiparticle tunneling mechanism yields a paramet-
rically smaller result [23], differing from Eq. (13) by an
additional factor (~ω01Tqp/π∆2)1/2 � 1; here Tqp � ∆
is the effective temperature of quasiparticles.

A single photon with energy ~ω > 2∆ is much more
effective in causing decoherence than the residual quasi-
particle density in a typical setting. This efficiency is
a byproduct of the efficient coupling between the su-
perconducting circuit and the electromagnetic cavity in
the transmon design. The quasiparticle mechanism [17]
yields Γqp

10 = xqp

√
2∆ω01/π2~, where xqp = nqp/(2ν0∆)

is the quasiparticle density in units of the density of
Cooper pairs. We compare the effectiveness of a single
photon with that of quasiparticles by equating 〈Γ10〉 =
Γqp

10 , and finding the corresponding xeff
qp,

xeff
qp =

√
2π2α

√
~ω01

∆

d2λν
ALz

. (24)

For a typical device [31], this yields xeff
qp ∼ 5×10−5 much

larger than the typical residual density [8] of . 10−6.
Comparison with experiment – Photon-assisted e-

jumps provide a natural explanation for the results of
the recent experiment [15]. In [15], the rates of e-jumps
accompanied by qubit excitation and relaxation, respec-
tively, were approximately equal each other. This ob-
servation is consistent with Eq. (14) and hints at a finite
probability nν of finding a high-energy photon in the cav-
ity. Furthermore, we may associate the observed rate of
e-jumps occurring without the qubit leaving the ground
state with the rate nνΓ00, while the above-mentioned
measured rate of 1 → 0 transitions is associated with
nνΓ10, cf. Eqs. (12a) and (12c) with ϕ0 = 0. Compar-
ing the ratio of the two with the experimental data, we
obtain the relation Γ00/Γ10 ≈ 4.1, which we treat as an
equation for finding the characteristic photon frequency.
Using the qubit parameters [31], we find ων ≈ 2.8∆/~.
Then, inserting this frequency into the ratio of rates (12b)
and (12c) yields Γ01/Γ10 ≈ 0.97, which is close to the
observed ratio between qubit relaxation and excitation
rates (accompanied by e-jumps).

To assess the individual rates (rather than their ra-
tios), we assume the incoming photons belong to a narrow
(compared to ων) bandwidth around the frequency ων .
We also assume this bandwidth is wide compared to the
mean-frequency spacing δω, which allows us substitute
Γν in Eqs. (12) by its ensemble-averaged value (23). [In
the opposite case of a narrow frequency bandwidth� δω,
all rates (12) would fluctuate from mode to mode ac-
cording to the Porter-Thomas distribution (19); we note
also that frequencies ~ων ∼ 2∆ for the parameters [31]
are at the margin of validity of the used-above condition
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ων . πc/Lz.] Inserting the device parameters [31] into
Eq. (23), we find Γ−1

0 ≈ 0.6µs. The measured e-jump
rates are much lower. This indicates that the measured
rates are actually controlled by the probability for a pho-
ton to enter the cavity. The sum of all measured e-jump
rates then yields the rate with which photons appear in
the cavity, dnν/dt = 1/TP with TP = 77µs [15]. Using
this value, qubit-state probabilities P0 ≈ P1 ≈ 1/2, and
the estimated-above Γ0 in equation

dnν/dt = nν
∑

n,m=0,1

Pn〈Γnm〉, (25)

we find the photon occupation factor nν ≈ 10−2.
Alternatively, we may consider e-jumps caused by pho-

tons coming into the cavity from outside not within a
narrow frequency band, but a distribution corresponding
to a thermal bath. In this case, the magnitude of e-
jump rates depends on the coupling parameters between
the cavity modes and the outside bath, which may de-
pend on the frequency of incoming photons. Neglecting
such dependence, the poorly known coupling parameter
cancels out in the ratios between rates. In the follow-
ing estimates, we consider the effect of external irra-
diation from a thermal bath at temperature Tb. Con-
volving the frequency-resolved rates (12) with the Bose-
Einstein distribution and density of modes, and assuming
~ω01, Tb � 2∆ we find:

Γ00/Γ10 ≈
√

2EJ
EC

Tb

∆
exp(−~ω01/Tb), (26a)

Γ01/Γ10 ≈ exp(−2~ω01/Tb). (26b)

Let us note a poor agreement of the data [15] with
such a uniformly-attenuated thermal photons model. In-
deed, equating Eq. (26a) with the corresponding ob-
served ratio, together with device parameters [31], yields
Tb ≈ 0.68∆. Inserting this temperature into Eq. (26b)
then yields ratio Γ01/Γ10 ≈ 0.77, which is about 30%
lower than the observed one. Therefore, we favor the
first explanation, involving photons in a relatively nar-
row frequency band.

Conclusion – We have identified a decoherence chan-
nel associated with an event of photon-assisted electron
tunneling through a Josephson junction in a supercon-
ducting qubit. This process results from breaking of
a Cooper pair by a stray photon with energy exceed-
ing 2∆, the electric field of which is concentrated at a
high-impedance junction. The qubit transition rates ac-
companying these photon-assisted e-jumps are markedly
different from those caused by residual quasiparticles,
and are consistent with the measured rates in Ref. [15],
where charge-parity switches were equally likely to ex-
cite or relax the transmon. Interestingly, we find that
the contribution per high-frequency photon in the cavity
to qubit decoherence (through energy relaxation) is sim-
ilar to that of low-frequency photons (through shot-noise

dephasing [33]). However, this similarity depends on the
particulars of the present implementation of the qubit-
cavity system. Unsurprisingly, our results reinforce the
importance of protecting superconducting qubits from
electromagnetic radiation at all frequencies. Addition-
ally the control of processes unveiled in this article may
open a perspective for the design of single-photon mi-
crowave detectors for frequencies above the gap.
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