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We consider granular quantum matter defined by Sachdev-Ye-Kitaev (SYK) dots coupled via
random one-body hopping. Within the framework of Schwarzian field theory, we identify a zero
temperature quantum phase transition between an insulating phase at weak and a metallic phase
at strong hopping. The critical hopping strength scales inversely with the number of degrees of
freedom on the dots. The increase of temperature out of either phase induces a crossover into a
regime of strange metallic behavior.

Introduction: Despite decades of research, our under-
standing of strongly correlated (‘non-Fermi liquid’) quan-
tum matter with metallic parent states remains incom-
plete. A universal feature of these materials is that
seemingly incongruent phases of matter — supercon-
ducting, insulating, poorly conducting, metallic, etc. —
coexist in close parametric proximity to each other[1].
The understanding of this diversity of competing phases,
which finds its most prominent manifestations in the
physics of the cuprates[2] or heavy fermion materials[3],
requires universal blueprints of correlated fermion mat-
ter transcending the Landau quasiparticle paradigm. Re-
cently, systems of coupled Sachdev-Ye-Kitaev (SYK)[4–
16] quantum dots have gained popularity in this context.
What makes these systems interesting is that a hallmark
of many correlated fermion materials — crossover from
a strange metal (SM) phase to a Fermi liquid (FL) upon
lowering temperatures — is generated within a very sim-
ple mean field picture[6], which assumes the individual
SYK cells to contain a thermodynamically large number
N → ∞ of quantum particles. In this paper, we do not
take this limit and explore what happens in ‘mesoscopic’
systems where N is large but finite. Our main finding
is that the phase diagram becomes significantly more in-
teresting and now features a zero temperature insulator–
FL transition at a critical value of the inter-dot coupling
inversely proportional to N . Extending the analysis to
finite temperatures, we find an insulator/SM/FL phase
separation as shown in (see Fig.1). Competitions of this
type are seen in many contexts, indicating that the meso-
scopic SYK network may capture essential ingredients
for the phenomenological description of the correlated
fermion matter.

The SYK model[4, 5] is a system of N Majorana
fermions, ηi, i = 1 . . . , N , subject to an all–to–all four
fermion interaction HSYK = (1/4!)

∑N
ijkl Jijklηiηjηkηl

with Gaussian distributed matrix elements Jijkl of vari-
ance 3!J2/N3. The system can be seen as a spatially
local, zero dimensional paradigm of strongly interacting
quantum matter: In the limit N → ∞, the absence of a
single particle term in the Hamiltonian implies that the
fermion operators carry dimension [time]−1/4, in marked

FIG. 1. Phase diagram of SYK array: T vs. dimension-
less hopping strength λ = (NV/J)2. At a critical value,
λc = 8/Z, the system undergoes a zero temperature metal–
insulator QPT. The two lines TI(λ) and TFL(λ) mark insu-
lator (I) to strange metal (SM) and FL to SM crossovers,
correspondingly. The insets shows thermal resistivity T/κ(T )
vs. T for λ < λc, λ = λc and λ > N > λc.

distinction to the FL dimension −1/2. This motivates
the extension to a d-dimensional array of nearest neigh-
bor coupled non Fermi liquid cells. In view of the inher-
ent randomness, it is natural to model the coupling by
one-body operators HT = (i/2)

∑
〈ab〉,ij V

ab
ij η

a
i η
b
j , where

a, b label the individual dots, and V abij are Gaussian dis-

tributed with variance V 2/N . Importantly, this cou-
pling is a relevant perturbation of dimension [

∫
dτηη] =

1 − 2 × 1/4 = +1/2. It implies a crossover from a
non-FL ‘strange’ metal at high temperatures to a con-
ventional, yet strongly renormalized, FL metal at low
temperatures[6].

The above scenario makes reference to the engineering
dimensions of the fermion operators and becomes valid
in the thermodynamic limit. However, for finite N , very
different behavior at low temperatures is expected. The
non-FL nature of an isolated SYK dot manifests itself
in an infinite dimensional ‘conformal’ symmetry[4, 17–
21] under continuous reparameterizations of time. The
above scaling dimension −1/4 reflects the breaking of
this symmetry at the large N mean-field level. However,
as temperature is lowered below the energy scale J/N ,
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strong Goldstone fluctuations associated to the confor-
mal symmetry ensue, and effectively change the dimen-
sion of the fermion operator to −3/4[19, 20, 22, 23]. In
this low energy regime, a single particle perturbation has
dimension 1− 2× 3/4 = −1/2 and now is RG irrelevant.

This dimensional crossover implies a competition be-
tween inter-dot couplings and intra-dot quantum fluc-
tuations: depending on the bare strength of the cou-
pling, Goldstone modes are either suppressed, or ren-
der the inter-dot coupling irrelevant. This implies the
existence of a metal-insulator quantum phase transition
(QPT) separating a phase of a strongly coupled FL from
an insulating phase of essentially isolated dots. Below,
we will explore this QPT within the framework of an ef-
fective low energy field theory describing granular SYK
matter in terms of two coupling constants, representing
intra-dot interaction and inter-dot coupling strength, re-
spectively. We will demonstrate the renormalizability
of the theory and from the flow of coupling constants
(cf. Fig. 2 below) derive the manifestations of quantum
criticality in two temperature scales marking an insula-
tor/SM and FL/SM crossover at weak and strong cou-
pling, respectively, cf. Fig. 1.

Before turning to the discussion of the model we note
that reference [24] applied similar reasoning to predict
a non-FL/FL phase transition for an isolated SYK dot
subject to a one-body perturbation. We will comment
on this result in relation to the I/FL transition in the
array geometry after developing the proper theoretical
framework. On general grounds we also expect similar
physics in models of interacting complex fermions, the
SY model[4–6]. However, the presence of U(1)-mode as-
sociated with particle number conservation in the SY
system makes the theory more complicated. We here
prefer to sidestep this complication and expose the rel-
evant physics within the SYK framework, unmasked by
the U(1) phase fluctuations [25]. In this system of electri-
cally neutral Majorana fermions, thermal conductivity,
κ(T ), is the main signature of transport, and from the
Wiedemann-Franz law we infer that the ratio T/κ plays
a role analogous to the electrical resistivity of complex
fermion matter. We find that in the insulating phase
it exhibits a minimum before diverging at small T as
T/κ(T ) ∝ 1/T (cf. bottom left inset in Fig. 1). In the SM
(FL) phase T/κ ratio exhibits T -linear (approximately
T -independent) behavior, respectively.

The model: we consider a system described by the
Hamiltonian[6]

H =
1

4!

∑
a

N∑
ijkl

Jaijklη
a
i η
a
j η
a
kη
a
l +

i

2

∑
〈ab〉

N∑
ij

V abij η
a
i η
b
j , (1)

where the mutually uncorrelated Gaussian distributed
coefficients Jaijkl and V abij have been specified above.
Following a standard procedure[17–21], the theory av-
eraged over the coupling constant distributions is

described by an imaginary time functional Z =∫
D(G,Σ) exp(−S[G,Σ]), where G = {Gaτ1,τ2} and

Σ = {Σaτ1,τ2} are time bi-local integration fields
playing the role of the on-site SYK Green function
and self-energy, respectively. The action S[G,Σ] ≡∑
a S0[Ga,Σa] +

∑
〈ab〉 ST[Ga, Gb], contains the ‘GΣ-

action’, S0, of the individual dots, and a tunneling ac-
tion ST[Ga, Gb] = 1

2NV
2
∫∫
dτ1dτ2G

a
τ1,τ2G

b
τ2,τ1 describ-

ing the nearest neighbor hopping. Here, we omit a replica
structure[26] technically required to perform the averag-
ing, but inessential in the present context.

While the explicit form of the GΣ-action[27] will not be
needed, the following points are essential: (i) the action
S0 possesses an exact SL(2, R)-invariance (see below)
and approximate invariance under reparameterizations of
time[4, 17–21], h : S1 → S1, τ 7→ h(τ), where h is a dif-
feomorphism of the circle, S1, defined by imaginary time
with periodic boundary conditions onto itself. The infi-
nite dimensional symmetry group diff(S1) of these trans-
formations is generated by a Virasoro algebra, hence the
denotation ‘conformal’. (ii) The symmetry is subject to a
weak explicit breaking by the time derivatives present in
the action S0. For low energies, the corresponding action

cost is given by[4, 17–21, 28–30] S0[h] = −m
∫ β

0
dτ{h, τ},

where {h, τ} ≡
(
h′′

h′

)′− 1
2

(
h′′

h′

)2
is the Schwarzian deriva-

tive, and the proportionality m ∝ N/J of the coupling
constant indicates that quantum reparameterization fluc-
tuations become stronger for small N . For temperature
scales T < m−1 even large deviations, h, away from
h(τ) = τ may have low action. This marks the entry
into a low temperature regime dominated by strong repa-
rameterization fluctuations. Finally, (iv) the mean-field
Green function Gτ1,τ2 = |τ1−τ2|−1/2 (the square root de-
pendence reflects the non-FL dimension of the fermions)
transforms under reparameterizations as

Gτ1,τ2 → Gτ1,τ2 [h] =

(
h′1h

′
2

[h1 − h2]2

)1/4

, (2)

where hi ≡ h(τi) and h′i ≡ dh(τ)/dτ |τ=τi . For an
isolated dot, integration over the h-fluctuations effec-

tively changes the Green function to 〈Gτ1,τ2 [h]〉h
mT�1−→

m|τ1− τ2|−3/2, corresponding to a change of the fermion
operator dimension to −3/4[19, 20, 22–24].

The effective low-energy lattice Schwarzian theory is
formulated in terms of the reparameterizations ha(τ) on
different dots. Its action S[h] = S0[h] + ST[h], is defined
through

S0[h] = −m
∑
a

∫
dτ {ha, τ}, (3)

ST[h] = −w
∑
〈ab〉

∫∫
dτ1dτ2

(
h′a1 h

′a
2

[ha1 − ha2 ]2
× h′b1 h

′b
2

[hb1 − hb2]2

)1/4
,

where m and w are parameters with dimensions of [time]
and [energy], and bare values m ∝ N/J and w ∝ NV 2/J .
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A hallmark of the lattice Schwarzian action, S[h], is its
invariance under actions of SL(2, R), where the group is
represented via the Möbius transformations h(τ) = ατ+β

γτ+δ
with αδ−βγ = 1. This shows that the h-transformations
to be integrated cover the coset space diff(S1)/SL(2, R).
The action itself is built from the two simplest SL(2, R)
invariant blocks: local {h, τ} and bi-local h′1h

′
2/[h1−h2]2.

Maintained SL(2, R) symmetry imposes a stringent con-
dition on the behavior of the theory under renormal-
ization. A successive integration over h-transformations
must leave the local and bi-local terms form invariant
(multi-point terms may be generated but are irrelevant).
The invariance condition thus implies that the renormal-
ization results in a flow of the two couplings m and w.

RG analysis: we decompose fluctuations into ’fast’ and
’slow’ as h(τ) = f(s(τ)) ≡ (f ◦ s)(τ), where f and s
are fluctuations in the frequency range [Λ, J ] and [0,Λ],
and Λ is a running cutoff energy[31]. We then integrate
out the fast modes f(s), and rescale time τ → τJ/Λ
to restore the UV cutoff Λ → J . Consider first the case
m−1 < Λ < J , where the reparameterization fluctuations
are suppressed. The RG flow is then governed by the
‘engineering’ dimensions, resulting in:

d lnm

dl
= −1;

d lnw

dl
= +1, (4)

where l = ln(J/Λ). For T > J/N this flow should be
terminated when either Λ reaches T , or V (l) ∼

√
w(l)

reaches the UV cutoff J . This defines the tempera-
ture scale TFL = V 2/J , separating the high temperature
SM and low temperature FL. In the SM phase w(T ) =
NV 2/T and T/κ(T ) ∝ J/w(T ) ∝ T/(NTFL) [6], while in
FL the thermal resistivity saturates at T/κ(T ) ∝ 1/N .

We now turn to the regime of strong reparameteriza-
tion fluctuations. When Λ reaches J/N , m(l) = m(0)e−l

reaches the inverse UV cutoff m(l) ≈ 1/J . To pro-
ceed with the further renormalization, we employ the
Schwarzian chain rule

{f ◦ s, τ} = (s′)2{f, s}+ {s, τ}, (5)

to obtain the action: S0[f ◦ s] = Sfast
0 [f, s] +S0[s], where

the ’fast’ Schwarzian action has a time-dependent mass
m(s) ≡ msa′. At lowest order in w one needs to average
the coupling action ST[f ◦s] over the fast fluctuations. A
straightforward application of the chain rule to the Green
functions, Eq. (2), shows that

Gτ1,τ2 [f ◦ s] = Gs1,s2 [f ](s′1s
′
2)1/4, (6)

so that 〈ST[f ◦s]〉f ∝ 〈Gs1,s2 [fa]〉fa×〈Gs2,s1 [f b]〉fb splits
into two fast averages. These expressions can be evalu-
ated with the help of exact results [19, 22] for the 2-
point propagator of the Schwarzian theory. Referring to
the supplementary material for details [32], we note the

asymptotic expressions (s12 ≡ s1 − s2):

〈Gs1,s2 [f ]〉f '


|s12|−1/2, s12 < m;√
m(s1)m(s2)|s12|−3/2, m<s12<Λ−1;

mΛ|s12|−1/2, Λ−1 < s12.

(7)
This equation implies that the double time integral in the
averaged tunneling action 〈ST[f ◦ s]〉f ≡ Sint +Slong gets
different contributions from intermediate (m < τ12 <
Λ−1) and long time differences (τ12 > Λ−1). In pro-
cessing the former, we use the general Taylor expansion
(τ = (τ1 + τ2)/2)(

s′1s
′
2

[s1 − s2]2

)∆

≈ 1

[τ1 − τ2]2∆
+

∆

6

{s(τ), τ}
[τ1 − τ2]2∆−2

+ . . . ,

(8)

with ∆ = 3/4 to process the rational functions of the slow
fields appearing upon substitution of Eqs. (5) and (7)
into the action. Here, the second term indicates how the
non-linear action of the tunneling term manages to feed
back into the Schwarzian action under renormalization.
Carrying out the details of the RG step (see supplemen-
tary material) and rescaling time to retain the value of
the cutoff, Λ, we find that the integration over the inter-
mediate time domain changes the coefficient of the local
action as m → m(l) ≡ e−l(m + Z

4 wm
2l). The comple-

mentary integration over large time differences conserves
the form of the tunneling action but changes the coupling
constant as w → w(l) = elw(mΛ)2 = elwe−2l

From these results, RG equations are obtained by dif-
ferentiation over l and putting l = 0. This leads to

d lnm

dl
= −1 +

Z

4
wm;

d lnw

dl
= +1− 2. (9)

The second equation reflects the aforementioned change
of the dimension of w from +1 to −1. While Eqs. (4) are
applicable for mJ � 1, the new set of the RG equations
(9) is derived in the opposite limit mJ � 1. (Indeed, this
is the condition under which the exact expressions for
the propagator[19, 22] can be reduced to the asymptotic
expressions (7), see the supplementary material.)
Analysis of the RG: we first note that the limiting

forms of the scaling equations, Eqs. (4) and (9), ad-
mit a closed representation in the dimensionless variable
λ ≡ wm. In the regime mJ � 1 one has d lnλ/dl = 0,
while for mJ � 1:

d lnλ

dl
=

(
Z

4
λ− 2

)
. (10)

This equation exhibits an unstable fixed point λc = 8
Z ,

marking a transition between a FL phase at λ > λc and
an insulating one at λ < λc. Since λ(0) ∼ (NV/J)2,
one finds Vc ∼ J/

√
ZN , inversely proportional to N ,

as stated in the introduction. Notice that according
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FIG. 2. RG flow in the plane of couplings (λ = mw,m);
here λc = 8/Z and mc = O(1)/J . The initial values are
m(0) = N/J and λ(0) = (NV/J)2.

to Eq. (9), d lnm/dl|λ=λc
= +1, opposite to Eq. (4).

The only way to reconcile the two limits is to have an-
other fixed point at mc ∼ 1/J . The resulting two pa-
rameter RG diagram in the plane (λ,m) is shown in
Fig. 2. To first order in an expansion in w, but arbi-
trary m, this diagram may be derived from exact ex-
pressions for 〈Gs1,s2 [f ]〉f , see supplementary material for
details. In particular, the RG equation for w becomes
d lnw/dl = 2−4∆ψ(m), where ∆ψ(m) is the effective m-
dependent scaling dimension of the fermion, see Fig. 3.
The analysis of higher orders in ST shows that the ac-
tual small parameter of the perturbative expansion is Zλ.
Therefore, the fixed point is actually out of the perturba-
tively controled regime and may not be used for quantita-
tive evaluation of critical indices. However, second order
calculations [33] show that RG flow keeps its qualitative
form, Fig. 2.

The FL part of the RG diagram, Fig. 2, is well de-
scribed by Eqs. (4) and the physics of the array is the
one discussed in Ref. [6]. The only addition is that
the crossover temperature TFL(λ) → 0, when λ → λc,
Fig. 1. This is due to the fact that for λ ≈ λc the flow
spends a long “time” in the vicinity of the (λc,mc) fixed
point, thus reaching progressively lower T . In the insu-

FIG. 3. The log-linear plot of the effective scaling dimension
of fermion operators ∆ψ, as a function of the running scale
mJ . For its exact definition in terms of 2-point function of the
Schwarzain theory we refer to the supplementary material.

lating phase, λ → 0 and thus according to dw/dl = −w
(Eq. (9)) and w ∼ V 2, V (T ) ∝ T 1/2. The diminishing of
the inter-dot coupling at low temperatures implies that
second order perturbation theory in V (T ) may be applied
to evaluate the thermal conductivity κ(T ). Therefore one
finds κ(T )/T ∝ |V (T )|2 ∝ T in the insulating phase.

To conclude, we have seen that the renormaliza-
tion procedure indeed preserves the form of the lattice
Schwarzian field theory. This stability follows from the
conformal relations (5) and (8), but ultimately is required
by the condition of maintained SL(2, R) symmetry. Our
ability to deduce the entire RG flow (for Zλ . 1) is
owed to the knowledge of the reparameterization aver-
aged Green function 〈G[f ]〉f for any m, which in turn
follows from mapping of the local Schwarzian action to
Liouville quantum mechanics [19]. We finally note that
the RG procedure introduced in this Letter may likewise
be applied to an isolated SYK dot subject to a random
one-body perturbation [24]. The most important differ-
ence is that the action ST is now subject to only one, and
not two different reparameterization modes. This leads
to a set of RG equations [34], different from the present
ones in that strength of the one-body term, w, remains
always relevant. At the same time, there is a transition
in the scaling of m, separating a FL phase (m � 1/J)
from a phase of strong quantum fluctuations (m → 0),
in line with the prediction of Ref. [24].

Summary — In this work we have shown that, regard-
less of dimensionality and geometric structure, an array
of SYK dots coupled by one-body hopping exhibits a
zero temperature metal-insulator transition. This phe-
nomenon is rooted in the conformal invariance of the non-
FL states supported by the individual SYK dots. The
presence of this symmetry in turn is a direct consequence
of an asymptotically strong dot-local interaction and may
transcend the specific model employed here. A mutually
suppressive competition between conformal fluctuations
on the dots and the conformal symmetry breaking tunnel-
ing operators implies the presence of a transition between
an insulating and a metallic phase, and a crossover into a
strange metal regime at finite temperatures. Read in this
way, the main message of our study is that phenomenol-
ogy present in many strongly correlated materials, may
follow from a rather basic principle. Although, the un-
derlying Schwarzian lattice theory will not be able to de-
scribe the specific physics of realistic quantum materials,
it will be intriguing to find out if the universality class
of its phase transition can encompass strong correlations
phenomena beyond those discussed here.
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