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We observe plasma heating due to collisional diffusion across a separatrix when a magnesium
ion column in a Penning-Malmberg trap is cyclically pushed back and forth across a partial trap-
ping barrier. The barrier is an externally applied axisymmetric “squeeze” potential, which creates
a velocity separatrix between trapped and passing particles. Weak ion-ion collisions then cause
separatrix crossings, leading to irreversible heating. The heating rate scales as the square root of
the oscillation rate times the collision frequency, and thus can be dominant for low-collisionality
plasmas. The particle velocity distribution function is measured with coherent Laser Induced Flu-
orescence, and shows passing and trapped particles having an out-of-phase response to the forced
plasma oscillations.

Electric and magnetic field inhomogeneities in plasmas
can create collisional boundary layers between trapped
and passing particles. These boundary layers are pre-
dicted to enhance plasma transport [1, 2], dissipate
poloidal rotation [3], and damp waves [4, 5]. Experi-
ments, numerical simulations, and theories on tokamaks
[6, 7], stellarators [8, 9], and pure electron plasmas [10–
14] have shown increased transport and wave damping
resulting from applied field inhomogeneities. However,
prior experiments have not directly observed the signa-
ture

√
νc fsl scaling of these boundary layer analyses,

where νc is the collisionality and fsl is the frequency at
which the particles are cyclically pushed across the sep-
aratrix.

A heating rate proportional to
√
νc fsl is similar to the

viscous heating of a sheared fluid caused by an oscillating
plate [15, 16]. Here, oscillating untrapped plasma takes
the place of the plate, transferring energy and momentum
diffusively into the trapped plasma through a boundary
layer of width proportional to

√

νc/fsl , as in the classic
fluid problem.

In this letter, we present quantitative measurements
of the particle dynamics in the presence of a velocity
separatrix, and of the resulting plasma heating induced
by collisional diffusion across this separatrix. Trapped
and passing particle populations are created by apply-
ing a cylindrically-symmetric electrostatic squeeze near
the middle of a pure ion plasma column. When the
plasma is cyclically pushed through this potential bar-
rier, the trapped and passing particles experience differ-
ent dynamics, forming a collisional boundary layer. The
particle dynamics are directly measured using a coherent
Laser Induced Fluorescence technique, and the trapped
(passing) particles are observed to move in (out-of)-phase
with the applied forcing, in quantitative agreement with
a recent collisionless adiabatic invariant analysis [17].

Ion-ion collisions cause velocity diffusion and separa-
trix crossings, which leads to irreversible heating scaling
as Ṫ /T ∝

√

νc fsl (eϕs)2 δL
2 where δL is the amplitude

of the forced oscillation through the separatrix potential
eϕs created by the externaly applied Vsqz . This heat-
ing is in quantitative agreement with recent theory [17].
The cyclic nature of the oscillation, effectively restarts
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FIG. 1. Pure ion plasma in Penning-Malmberg trap forced
through “squeeze” with oscillating voltage Vsl. The figure
shows the plasma pushed to the right, defined as phase 0◦.
Top curve sketches potential along the magnetic field at the
laser radial position.

the diffusion process at each cycle, resulting in “cyclic
diffusion” of particle across the separatrix.
These experiments for the first time confirm the signa-

ture
√
νc fsl scaling of the collisional separatrix heating,

by changing the rate fsl at which the plasma is oscillated
through the squeeze, and by changing ion-ion collisional-
ity νc over a range of 100x in νcfsl.
A Penning-Malmberg trap with a wall radius

RW = 2.86cm is used to confine un-neutralized magne-
sium ions in a magnetic field of B = 3.T [18], as shown
in Figure 1. These traps can contain the same charged
particles in steady state for weeks [19], by using weak
“rotating-wall” electric potentials [20]. Using Laser In-
duced Fluorescence diagnostics on the ground state of
Mg+ (λ ≃ 280nm), the plasma radial density profile
n(r, zL) and temperature T (r, zL) are measured at the
laser location zL; and the 2D density n(r, z) is then cal-
culated using a Boltzmann-Poisson solver [21]. A typ-
ical plasma, axially confined with Vconf = 100V, has
a length Lp ≃ 11.cm, and a radially uniform density
n0 ≃ 2×107 cm−3 out to Rp ≃ 0.5 cm, resulting in an al-
most rigid E×B plasma rotation at a frequency fE×B ≃
10 kHz. The ions cool toward 0.04eV from collision with
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neutral H2 at pressure P ≃ 10−8 Torr, and applied weak
cyclotron heating on the 24Mg+ ions controls the plasma
temperature over the range 0.04 eV < T < 1 eV. Ini-
tial radial temperature profiles are uniform within 10%
inside most of the plasma, and typically 25% warmer on
the edge (see for example ref.[22]). The temperature is
presumed to be uniform in z.

For these experiments, a velocity separatrix is created
by applying a squeeze potential Vsqz to an annular elec-
trode as shown in Figure 1. The cyclic axial plasma
flow (sloshing) is formed by adding nominally sinusoidal
voltages±Vslcos(2πfsl t) to the end confinement voltages
Vconf , with the ± referring to left/right ends. Typically,
the slosh frequency fsl = 500Hz, and the slosh ampli-
tude Vsl ≃ 50Vp effectively displaces each end a distance
±δL ≈ 0.5 cm.

To test recent theory [17], these experiments are per-
formed in the “super-banana” regime defined by νc ≪
2πfsl ≪ 2πfb [8, 17]. Here the axial bounce frequency

is fb = v̄/2Lp ≃ 10kHz (10cm/Lp) (T/1eV)
1/2

with

v̄ = 2. × 105 (T/1eV)
1/2

cm/s. The classical ion-
ion collision rate given by νc ≡ 4

3

√
πnv̄b2 ln (rc/b) ≃

1.0s−1
(

n/107cm−3
)

(TeV /1eV)
−3/2

. In this temperature
regime bulk viscous heating (scaling as νc/fsl) is sub-
stantially weaker [23] than the separatrix heating. Also
fsl < fb, so that the (νc − independent) heating due to
excitation of bounce resonances is minimized [23].

The particle dynamics is measured using a coher-
ent Laser Induced Fluorescence (LIF) technique [24],
which measures the parallel velocity distribution func-
tion F (v, zL) coherent with the phase θ(t) of the forced
plasma sloshing. Reference [18] describes the ground
state Mg+ LIF scheme at 280nm, while reference [24] de-
scribes the coherent LIF technique. The laser wavelength
is set to be resonant with a Mg+ ion moving at veloc-
ity v. The plasma is then sinusoidally forced back and
forth through the separatrix ϕs for 500ms (250 cycles at
500Hz) and the time of arrival of each fluorescent photon
is recorded along with the phase of the slosh. The plasma
is then allowed to re-equilibrate for 10 seconds, and the
process is repeated for 100 different laser wavelengths,
encompassing the entire particle velocity distribution.

Post-processing of the data assigns, each photon
from each wavelength (velocity) into 16 phase bins
θj = j2π/16 corresponding to the slosh phase at the pho-
ton time, and the entire phase-coherent distribution is
reconstructed as F (v, θj , zL). Due to the finite size of
the laser beam and viewing volume, these measurement
are convolved over a 0.2cm diameter, 0.3cm long cylin-
der centered at zL. The beam diameter was selected to
optimized the signal to noise and minimize non-linear
distortion of the distribution function.

Figure 2a shows the coherent F (v, θj , zL), obtained
during 125 slosh cycles, at two phases corresponding to
the right (phase 0◦) and left (phase 180◦) slosh extremes.
For phase 0◦ (red dots), the plasma is being forced to the
right as shown in figure 1. Therefore, the trapped par-
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FIG. 2. a) Measured velocity distribution shown for phase 0◦

(plasma pushed to the right) and phase 180◦ (plasma pushed
to the left). b) Symmetric coherent response of the velocity
distribution. Measurements are shown with squares, the solid
line is the theory prediction averaged over the 0.1cm radius
of the laser beam. Horizontal axes are normalized particle
velocity.

ticles at the laser location zL are compressed, giving a
larger density at low velocity. In contrast, the density
of passing particles at zL decreases to equalize the po-
tential along on a given field line. For phase 180◦ (blue
triangles) the plasma is forced to the left, and the density
changes are reversed. The dotted line of figure 2a is the
Maxwellian distribution FM (v) before sloshing, and the
two vertical grey dashed lines indicate the minimum par-
ticle velocity vLsep at the laser location required to cross
the separatrix. The asymmetries in the measured F (v)
are due to small fractions of magnesium isotope 25 and
26.
We also observe that the entire distribution of parti-

cles is sloshing at a low velocity. For the data presented
in figure 2a, vsl ≃ 5000 cm/s ≃ 0.03v̄ is measurable, but
too small to be visible on this plot. Assuming a forced
sinusoidal oscillation of the plasma, the in-phase [25] co-
herent change of the distribution is

δF coh(v) ≡
15
∑

j=0

F (v, θj)× cosθj . (1)

Changes in the plasma density and temperature appear
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in the v−symmetric response given by

δF coh
sym(v) ≡ 1

2FM (0)

[

δF coh(v) + δF coh(−v)
]

, (2)

where FM is the initial Maxwellian distribution. The
analogous v-antisymmetric response yields the fluid ve-
locity of the particles.
The symmetric coherent response δF coh

sym(v, zL) is plot-
ted in figure 2b. The horizontal axis is the measured par-
ticle velocity at zL, normalized to the initial thermal ve-
locity v̄ = 1.6×105 cm/s from temperature T = 0.65 eV.
Each symbol corresponds to measurements performed
at two wavelengths of the laser, corresponding to ±v.
The collision rate is νc = 3.8 sec−1, so a thermal ion
experiences about 2 collision during the 250 slosh cy-
cles. The symmetric response δF coh

sym(v) clearly shows
that the trapped particles (v < 1.05 v̄, at this measure-
ment radius, rL = 0.4cm) are in-phase with the forcing,
whereas the passing particles (v > 1.05 v̄) are out-of-
phase. At phase 0◦ (sloshed right), the left-trapped den-
sity increases while the passing particle in the left density
decreases. The velocity where δF coh

sym(v) = 0 is the mea-

sured separatrix velocity vLsep at the laser location.
The curves of Figure 2b are the predicted

δF coh
sym(v, zL, rL) from the theory of Ref.[17]. This

theory first evaluates the collisionless adiabatic response
to the cos(2πfsl t) oscillation in the external potential.
Assuming the variations are small, so linear theory can
be applied, the perturbed distribution is

δF (z, vz, r, t) = − cos(2πfsl t)
e δϕ(z, r)− e 〈δϕ〉(r, E)

T
.

(3)
Here E(z, vz, r) = eϕ+ 1

2
mv2z is the energy of a particle,

δϕ(z, r) cos(2πfsl t) is the perturbed electrostatic poten-
tial, and the angle brackets indicate a “bounce-average”
over a collisionless particle orbit, The particle dynamics
is at fixed r, but the potentials ϕ(z, r) and δϕ(r, z) are de-
termined by self-consistent solution of Poisson’s equation
with the wall boundary conditions. Thus, the separatrix
energy Esep(z, r) depends strongly on r, and passing par-
ticles will “shield” the potential from trapped particles
at other radii.
The long dashed-line of figure 2b is the collisionless

theory prediction of δF coh
sym(v) for r = 0.4 cm, showing

a sharp discontinuity at the separatrix. The discontinu-
ity is due to the bounce average of δϕ being different
for trapped particle and passing particles. The short
dashed-lines are the theory predictions for r = 0.3 cm
and r = 0.5 cm corresponding to the edges of the laser
beam. The solid line is the prediction of δF coh

sym(v) av-
eraged over the laser beam, predicting a smooth mea-
sured distribution. Data with an increased beam size
(not shown) corroborates the effect of spatial averaging.
The particle kinetic energy required to pass

through the squeeze is a function of z-position
and radius in the plasma, and we determine
EL

sep(zL, rL) ≡ 1

2
m[vLsep(zL, rL)]

2 by detecting the
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FIG. 3. Radial profile at “laser location” zL of a) Kinetic par-
ticle energy required to cross separatrix, b) coherent density

perturbation, and c) heating rate Ṫ plotted against radius.
Solid symbol are experimental measurement and open sym-
bols are theory predictions.

change of sign in the symmetric response of δF coh
sym(v)

occuring at vLsep, as shown in Fig. 2b. Note that the
LIF measures the kinetic energy of particles only at
z = zL, so particles with energy less than ϕ(zL, r) are
not detected, since they do not have enough energy
to reach the diagnostic location. On axis r = 0, at
zmin, the potential with respect to the trap wall is
eϕ(zmin, r = 0)= 14.89eV, at the laser location the
eϕ(zL, r = 0) = 14.98eV, and eϕ(zsep, r = 0)= 15.11eV;
this gives a separatrix energy relative to the laser
position of EL

sep ≡ eϕ(zsep, r = 0) − eϕ(zL, r = 0)
= 0.13eV. These potentials are calculated from the
Poisson-Boltzmann equilibrium [21]. The estimated
absolute accuracy is ± 0.1V due to uncertainty in the
total number of ions; and the estimated relative accuracy
at various locations is ± 0.02V.

Figure 3a compares the LIF-determined EL
sep (squares)

to that calculated from the Boltzmann-Poisson equilib-
rium eϕ(z, r) (open circles), as a function of radius. This
corroborates the interpretation of vsepL on Fig.2b. Fig-
ure 3a shows that EL

sep is reduced by Debye shielding in
the center. Measurements at all seven radial locations
are performed on the same plasma, but due to repeated
sloshing through the squeeze potential some particles on
the outside edge of the plasma are lost. The plasma ra-
dius evolves from 0.64cm to 0.57cm over the course of
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the measurement. The data are collected at “interlaced”
radii to avoid systematic drift. The theory predictions
of figure 3 are calculated at each specific radius for the
measured experimental conditions. The lines on figure 3
are merely to guide the eye.
Integrating δF coh

sym(v, r) gives the density perturbation

δncoh(r) plotted versus radius in figure 3b (triangles),
with the theory prediction from integrating Eq.(2) (open
circles). At large radii most particles are trapped and
δncoh > 0, because the trapped density increases as the
trapped plasma is compressed. In contrast, at small radii
δncoh < 0, because most particles are passing, and can
move to shield out trapped particle density charges.
The second half of this letter focuses on the plasma

heating caused by collisions acting on this parti-
cle dynamics. As the trapped particles are com-
pressed/expanded by the slosh, they undergo an adia-
batic change in temperature δT = ±2T (δL/L)2 every
period of the slosh oscillation, where the ± indicates that
δT reverses sign across the separatrix. Collisions then
cause particles with energy near the separatrix energy
eϕs to make a trapped/passing transition before the slosh
perturbation reverses; this defines a collisional boundary
layer of energy width ∆E =

√

T eϕs νc/(2πfsl) around
the separatrix. For the case presented in figure 2b, the
width of the boundary layer is small with ∆E =0.02eV.
Collisions make the adiabatic heating of the trapped

particles irreversible, which leads to plasma heating scal-
ing as fsl (eϕs)

2 (δL/L)2 αBL, where αBL is the fraction
of particles in the boundary layer. For a Maxwellian dis-
tribution, αBL ∼ (∆E/

√
T eϕs) exp(−eϕs/T ), so the

heating rate is

Ṫ

T
∼

√

νcfsl (eϕs/T )
2 (δL/L)2 exp(−eϕs/T ). (4)

The exact expression for the heating rate can be found in
equation 51 of reference [17], and was used to calculate
the open circles of Figure 3c for each radius. Theory and
experiment are in quantitative agreement at each radius,
and show that the maximum heating occurs where about
half the particles are trapped. Note that theory gener-
ally describes the heating per cycle scaling as

√

νc/fsl.
Experimentally we measure the heating rate (per unit of

time) that scales as fsl
√

νc/fsl =
√
νc fsl. The temper-

ature is measured before and after the multi-cycle slosh
through a squeeze at which times the distributions are
close to Maxwellian.
We vary Vsqz to change the separatrix energy eϕs. In

these experiments we observe a heating rate with the
(eϕs)

2exp(−eϕs/T )) δL2 scaling of Eq.4 over the range
3 < Vsqz < 15V and 0.35cm< δL < 1.8cm.
We also for the first time observe the

√
νcfsl heating

rate characteristic of boundary layer analysis. Figure 4
displays the measured heating rate for a wide range of
plasma parameters, confirming the

√
νc fsl scaling over

a factor of 100 in νcfsl. Here, the 4 different symbols
represent νc and fsl values as shown. The heating rate
Ṫ /T is scaled as expected theoretically for the (δL/L)2
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FIG. 4. Normalized heating rate Ṫ /T plotted versus collision
rate times sloshing frequency, showing heating rate propor-
tional to

√
νc fsl.

amplitude of the displacement, for the (eϕs/T )
2 ratio of

potential to thermal energies, and for the exp(−eϕs/T )
dependance of the number of particles at the separatrix
energy. The squares, are the normalized heating rate for
the low collisionality plasma (νc ≃3.8. s−1) of figure 2 and
3 at rL=0.3 and 0.4cm. The dot is from a plasma with
νc = 7.8s−1. The blue symbols are for (νc ≃ 210.s−1);
the triangles (δL = 1.cm) and diamonds (δL = 1.8cm)
and sloshing frequencies (50Hz< fsl < 1200Hz). The
symbols of figure 4 cover a range of 55 in collisionality
νc, and 24 in frequency fsl. The solid line is the heating
rate predicted by theory with no adjustable parameter
from equation 51 of reference [17].

To control the temperature and therefore the ion-ion
collision rate, we typically keep the hydrogen pressure
fixed and change the amount of cyclotron heating. We
have used other combinations of hydrogen pressure and
cyclotron heating to obtain the same temperature. The
heating due to separatrix crossings is caused by ion-ion
collisions, and we observe the same separatrix heating
rate for other combinations of pressure and cyclotron
heating. The (slower) cooling collisions with neutral H2

molecules are not essential to the observed heating due
to separatrix crossing.

Experimentally, it is worth noting that oscillating the
plasma in the absence of a separatrix, produces negligible
heating. Furthermore, applying a negative squeeze volt-
age does not produce separatrix heating, since it does
not create a separatrix between separate trapped popu-
lations. For example applying Vsqz = -15V on a plasma
similar to the one used in figure 2 and 3 results in a neg-
ligible heating rate Ṫ ≃ 0.02eV/s at rL = 0.4cm.

Other mechanisms can also heat the plasma, albeit at
a much slower rate when νc ≪ 2πfsl. For instance, cyclic
plasma compressions and expansions causes bulk viscous
heating of order νc T (δL/L)2 [23]; and our “slosh” pro-
cedure also compress and expands the trapped particles.
For the plasma data of figure 3 this bulk viscous heat-
ing is maximum at r= 0.42 cm where Ṫvis = 0.009 eV/s
about 100 times smaller than the heating attributed to
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separatrix dissipation, as shown by the dotted line at the
bottom of the graph. For the large collisionality data
νc = 210.s−1 of figure 4, bulk viscous heating is about 15
times smaller that the heating attributed to separatrix
dissipation.
To summarize, we have used external electrodes to cre-

ate a controlled velocity space separatrix, and have forced
the plasma to oscillate through it at frequencies in the
super-banana regime νc ≪ 2πfsl ≪ 2πfb. We experi-
mentally identify passing and trapped particles, and have
observed directly the coherent particle response in quan-
titative agreement with newly developed theory. Fur-
thermore these experiments for the first time confirm
plasma heating scaling as

√
νc fsl , in quantitative agree-

ment with super-banana heating due to particle diffu-

sively crossing an energy separatrix. This heating mech-
anism is relatively large for low collisionality plasma and
can be significant for fusion plasma.
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