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We describe a new class of resonances for extreme mass-ratio inspirals (EMRIs): tidal resonances,
induced by the tidal field of nearby stars or stellar-mass black holes. A tidal resonance can be
viewed as a general relativistic extension of the Kozai-Lidov resonances in Newtonian systems, and
is distinct from the transient resonance already known for EMRI systems. Tidal resonances will
generically occur for EMRIs. By probing their influence on the phase of an EMRI waveform, we can
learn about the tidal environmental of the EMRI system, albeit at the cost of a more complicated
waveform model. Observations by LISA of EMRI systems therefore have the potential to provide
information about the distribution of stellar-mass objects near their host galactic-center black holes.

Introduction. Ground-based gravitational-wave (GW)
detectors have achieved tremendous success observing
merging stellar-mass black holes (BHs) and neutron stars
(NSs). At lower frequencies (∼ mHz), the Laser Inter-
ferometer Space Antenna (LISA) will probe binaries in-
volving massive BHs at the centers of galaxies[1].

One important source class for LISA are extreme mass-
ratio inspirals (EMRIs), stellar-mass objects (typically a
10–30M� BH) spiraling into a massive (∼ 105–107M�)
BH in a galactic center. The large separation of mass
scales means that the stellar-mass object’s influence on
the binary may be approximated as a perturbation of the
large BH’s spacetime. These stellar-mass objects typi-
cally undergo 105–106 orbits near the large BH in the
LISA frequency band before finally plunging, providing
a unique laboratory for mapping the spacetimes of BHs
and enabling precise tests of strong-field gravity (see, for
example, [2] for a recent review).

In this Letter, we propose that GW observations of
EMRIs can be used to probe the environmental tidal field
generated by stars and BHs near an EMRI system. The
EMRI waveforms will encode information about the BH
and stellar distribution in galactic centers which are dif-
ficult to obtain with electromagnetic observations. We
show that an environmental tidal field introduces a new
type of resonance behavior, hereafter called the tidal res-
onance, on the EMRI waveform. This effect can be in-
tuitively understood as the general relativistic extension
of the Newtonian Kozai-Lidov resonance [3]. Tidal reso-
nances are different from transient resonances [4], which
arise from the gravitational self-force.

BHs near EMRIs. Galactic centers are crowded en-
vironments. There are good theoretical reasons to ex-
pect several 105 M� in stellar-mass BHs inside the inner
parsec around a galaxy’s central BH [5, 6] and there is
(tentative) observational evidence supporting this for our
own galaxy [7]. Scattering processes can put stellar-mass
objects (such as stars and black holes) near enough to the
massive BHs in galactic centers for the object to be grav-
itationally bound to the BH. Mean-motion resonance, in

which a pair of stellar-mass objects jointly migrates to-
wards the massive black hole until the resonant locking
breaks down [8], can also bring BHs close to the massive
BH.

Currently, the distribution of stellar-mass objects
nearby massive BHs is not well known. Proper dynami-
cal theory calculations or N -body simulations are needed
to compute the distribution of stellar-mass objects near
galactic center BHs and assess the distance of the out-
liers closest to the central BH. Predictions based on a
Fokker-Planck simulation suggest that a population of
40M� BHs can be close to Sagittarius A*, with medium
distance ∼ 5 AU [9, 10]. This is roughly consistent with
the following simple estimate for the distance of the clos-
est BH, which mimics an argument in [11]. The EMRI
merger rate is about [12]
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where τ is the interval between EMRI events, and M
is the mass of the central BH. Note that this estimate
is subject to significant model uncertainties. Assuming
that orbit decay is mainly driven by GW emission, at the
time of an EMRI the distance R to the next infalling BH
(with mass M?) can be estimated using
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telling us that

R ∼ 4.3 AU
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with MSgrA∗ = 4× 106M� the mass of Sagittarius A*.
Although it is interesting that this estimate agrees with

[9, 10], we emphasize that it is only meant to provide a
plausible case that a stellar mass black hole can be close
enough for its tides to significantly influence an EMRI’s
orbit evolution. In particular, this estimate ignores the
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fact that tidal perturber’s orbit will surely be eccentric.
A critical point is that, because the tidal field scales as
M?/R

3, the nearest outliers from a distribution of stel-
lar mass black holes in the innermost regions of a galaxy
(such as discussed in [5–7]) will have the strongest im-
pact, significantly greater than the tides from another
massive BH at ∼ 0.1 pc (considered in [13]). The closest
stellar-mass BHs are likely to be the main contributors
to the tidal environment of EMRIs.

Tidal resonance. An EMRI orbit deviates from BH
geodesic motion due to the gravitational self-force [14]
and the tidal field from nearby stars and BHs. The in-
duced acceleration by the tidal field is generally smaller
than that of the self-force. As we are interested in the
EMRI motion near the central massive BH, it is natu-
ral to apply BH perturbation techniques [14] instead of
post-Newtonian simulations as was done in [11].

There is a two-timescale separation in the description
of EMRI orbital evolution [15]. This separation simplifies
the analysis approximating the orbit at any moment as a
geodesic (with evolving integrals of motion) plus pertur-
bations. The fast timescale corresponds to the cyclic mo-
tion, and the slow timescale to the secular change of con-
served quantities by radiation reaction. As Kerr geodesic
motion is separable [16], it is convenient to use action-
angle variables qr,θ,φ to describe the motion in (r, θ, φ):

dqi
dτ

= ωi(J) + ε g
(1)
i,td(qφ, qθ, qr,J) + η g

(1)
k,sf(qθ, qr,J)

+O(η2, ε2, ηε) ,

dJi
dτ

= εG
(1)
i,td(qφ, qθ, qr,J) + η G

(1)
i,sf(qθ, qr,J)

+O(η2, ε2, ηε) . (4)

The action variables J := {Jr, Jθ, Jφ} are functions of
the energy E, angular momentum along the symmetry
axis Lz and the Carter constant Q; η is the EMRI mass
ratio, and ε := M?M

2/R3 characterizes the strength of
the tidal field produced by the third body M?. The pa-
rameter τ is the proper time of the inspiraling body. The

terms G
(1)
i and g

(1)
i force the orbit away from geodesic

motion. Terms with subscript “td” are from the tidal
force, and depend upon the axial angle φ and the third
body M?; terms with subscript “sf” are from the self-
force (generated by gravitational radiation reaction) and
do not depend on φ and M?. Without the self-force and
the tidal force, J would be conserved quantities and qi
would increase at a fixed rate in time.

Focus now on the tidal force G
(1)
i,td and drop the sub-

script “td.” We write this term in the frequency domain

G
(1)
i (qφ, qθ, qr,J) =

∑
m,k,n

G
(1)
i,mkn(J)ei(mqφ+kqθ+nqr) , (5)

with m, k, n integer. Over the total duration of the EMRI
inspiral (∼ M/η), the dissipative part of the self-force

(∝ η) changes the conserved quantities by an order of

unity. In G
(1)
i , the exponential in qφ,θ,r generally os-

cillates in time, so a typical mode with nonzero m, k, n
will vanish after orbit averaging, and consequently does
not contribute to secular changes of conserved quantities.
However, in special cases one can have

ωmkn := mωφ + kωθ + nωr = 0 , (6)

so that the exponential does not oscillate. If the corre-
sponding force amplitude Gi,mkn is non-zero, this mode
will induce a secular change in J. This is the tidal res-
onance. By Eq. (4), both J and ωi(J) change at the
radiation reaction timescale M/η. The tidal resonance is
thus transient because of the orbit’s inspiral. However,
it occurs under more general conditions than the tran-
sient resonance of the gravitational self-force [4], which
requires kωθ + nωr = 0. Transient resonances have been
show to occur for generic EMRIs [17, 18]; the same con-
clusion should apply for tidal resonances since its reso-
nance condition is more general. Moreover, tidal reso-
nances will exist for low eccentricity orbits, whereas the
transient resonance may be unimportant for many LISA
EMRI sources due to low eccentricity [19].

The tidal resonance induces a change in J. Defining
τ = 0 as the moment of resonance, and expanding qi
around this point as qi0 + ωi0τ + ω̇i0τ

2 + O(τ3), this
change across the resonance is well-approximated by [4]

∆Ji = ε

∫ ∞
−∞

G
(1)
i (qφ, qθ, qr,J)dτ (7)

=
ε

η1/2

∑
s

√
2π

|Γs|
exp

[
sgn(Γs)

iπ

4
+ isχ

]
G

(1)
i,sm sk sn ,

with χ := mqφ0 + kqθ0 + nqr0, s a non-zero integer, and
Γ := mω̇φ0 + kω̇θ0 + nω̇r0; terms with s = ±1 dominate.
All quantities are evaluated at resonance. As ∆J is pro-
portional to ε/η1/2, the accumulative phase shift over 1/η
inspiral cycles is proportional to ε/η3/2.

In Eq. (7), we ignore changes of the external tidal field
during the resonance. This is valid if the orbital period
of the perturbing third body, Ttd ∼ 2π

√
R3/M , is much

longer than the resonance’s duration, Tres ∼ 1/
√
ηΓ.

When this holds, the tidal field is effectively static during
the resonance. It is possible that the third body is so close
to the EMRI that Ttd . Tres. In such a case, if the third
body’s orbit is near the EMRI’s equatorial plane and has
azimuthal frequency Ωφ, we only need to correct qφ0 : the
tidal resonance is shifted to m(ωφ∓Ωφ) +kωθ +nωr = 0
(upper sign for prograde motion of the third body, lower
for retrograde). Because Ωφ � ωφ, such a resonance is
dynamically the same as in the Ttd � Tres case, but is
evaluated at a slightly different frequency. In the most
general setting, Gi must include the motion of the third
body or the time dependence of the tidal field in Eq. (7).

To evaluate Gi, we need the perturbation hαβ to the
central BH’s spacetime due to the tidal field. This
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is found by solving the Teukolsky equation [20] in the
slow motion limit followed by metric reconstruction [21].
For simplicity, we put the tidal perturber on the (x-y)
equatorial plane and only consider its quadrupolar na-
ture (the dipolar perturbations induced are zero), with
the massive BH spin along the z-axis [33]. As we
will see, this restricts the type of resonances encoun-
tered. Specifically, we choose as the tidal moment tensor
Eab = (M?/R

3)(2∇ax∇bx − ∇ay∇by − ∇az∇bz), where
x, y, and z describe the motion of the perturbing third
body in Cartesian-like coordinates (see Sec. IX B of [22]).
We substitute this in Eqs. (7), (45), and (46) of [21] to
obtain hαβ in the ingoing radiation gauge in advanced
Eddington-Finkelstein coordinates [34]. Next, we per-
form a coordinate transformation to Boyer-Lindquist co-
ordinates. Given hαβ , we can compute the induced accel-
eration with respect to the background Kerr spacetime

aα = −1

2
(gαβKerr + uαuβ)(2hβλ;ρ − hλρ;β)uλuρ , (8)

with uα the unit vector tangent to the worldline of the
EMRI’s small mass µ. The corresponding instantaneous
change rates of the integrals of motion are [13]

dLz
dτ

= aφ (9)

dQ

dτ
= 2uθaθ − 2a2 cos2 θutat + 2 cot2 θuφaφ . (10)

The energy E is conserved as the spacetime is assumed
to be stationary during the resonance.

Sample evolutions. To illustrate the tidal resonance
and to estimate its impact on the phase of an EMRI wave-
form, we consider three different scenarios summarized in
Tab. I and Fig. 1. In all these scenarios, the EMRI crosses
a tidal resonance with m : k : n = −2 : 2 : 1 [35].

After orbit averaging, the sum in Eq. (5) is〈
G

(1)
i (qφ, qθ, qr,J)

〉
≈ G(1)

i,−2,2,1(J)e−2iqφ0 + cc . (11)

With G
(1)
i,−2,2,1, we compute ∆Q,∆Lz as a function of χ

using Eq. (7). For this, we also need Γ, which we calculate
assuming that the main evolution of the orbit is due to

TABLE I: Three prograde orbital motions. Fig. 1 shows the
dependence on qφ0, which has the same functional form for
all three cases.

aa rmin rmax θmin
b Q̇−2,2,1 L̇z−2,2,1

0.7 3.5 5.1628033 π/3 1.66 + 2.27i −0.35− 0.47i

0.9 3 6.6159726 π/4 6.60 + 7.70i −1.72− 2.01i

0.99 3 5.3718120 π/4 4.46 + 3.43i −1.23− 0.95i

aDimensionless spin of the central BH.
bθmin = π − θmax.
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FIG. 1: Average change rate of the Carter constant (solid,
blue) and angular momentum along the z-direction (dashed,
red) as a function of qφ0 for the case with a = 0.99 (see
Tab. I). Both 〈dQ/dt〉 and 〈dLz/dt〉 are normalized by ε to
remove the associated linear dependence, and powers of M to
be dimensionless.

GW dissipation. Within this approximation [23, 24],(
J̇r
η
,
J̇θ
η
,
J̇φ
η

)

= −
∑
lmkn

(n, k,m)

2ω3
mkn

(
|Z̃out
lmkn|2 + αlmkn|Z̃down

lmkn|2
)
, (12)

where the coefficient αlmkn, the asymptotic Teukolsky
wave amplitude at infinity Z̃out

lmkn and at the horizon

Z̃down
lmkn are defined in [25] [36]. For a given resonance,

we compute the wave amplitudes and αlmkn by solving
the Teukolsky equation in the frequency domain, with a
source term associated with the stellar-mass object’s or-
bital motion at frequencies (ωr, ωθ, ωφ). Our code agrees
very well with other Teukolsky equation solvers [25].

For the a = 0.99 initial conditions, Tres ∼ (ηΓ)−1/2 ∼
14η−1/2M and the ratio between Tres and Ttd is

Tres
Ttd
∼ 1.2

(
µ

10M�

)− 1
2
(

M

MSgrA∗

)2(
R

4.3 AU

)− 3
2
,

(13)

where µ is the mass of the small inspiraling body. These
timescales are comparable for this example, so we are
in the regime Tres ∼ Ttd and must shift the resonance
(including Ωφ in the resonance condition), as compared
to the static perturber approximation. Since Ωφ/ωφ ∼
7.1 × 10−3(r/4MSgrA∗)3/2(R/4.3 AU)−3/2, this shift is
negligible in evaluating the resonance strength.

Impact on orbital phase. To estimate the effect of
tidal resonances on the phase of GW waveforms, we
evolve two orbits starting at the point of tidal resonance
considered in Fig. 1, one with and one without ∆Ji in-
cluded. This evolution is realized with the orbit-averaged
fluxes in Eq. (12) evaluated at each time step computed
with the Teukolsky code, which in turn are used to up-
date Jr, Jθ, Jφ and subsequently E,Q,Lz in time. At
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FIG. 2: Evolution of the difference in ωφ between inspirals
with and without resonant ∆Ji (blue curve), and illustration
of resonances encountered during inspiral (dots). We take the
central black hole to have M = MSgrA∗ ; both the inspiraling
body µ and the perturbing tidal source M∗ are 10M�; and
the tidal source is at separation R = 4.3 AU. The orbits start
at the resonance point qφ0 = 0.33 in Fig. 1; the final time is
the plunge. Red and blue dots show the resonance duration
Tres for resonances with {|m|, |k|, |n|} ≤ 5; blue dots indicate
m = ±2. (The right-hand vertical axis has the same scale
as the left.) The tightly bunched dots in the lower right il-
lustrate how the system passes rapidly through multiple tidal
resonances in quick succession as plunge is approached. The
inset shows the associated accumulated phase shift.

each time we compare ωφ. Its difference is plotted in
Fig. 2. To estimate the deviation in orbital phase caused
by the tidal resonance, we evaluate (c.f. Fig. 2)

∆Ψ :=

∫ Tplunge

0

2∆ωφdt

= 1.4

(
µ

10M�

)− 1
2
(

M

MSgrA∗

) 7
2
(

M∗
10M�

)(
R

4.3 AU

)−3
,

(14)

where Tplunge is the time of the plunge after the tidal
resonance; in this example, Tplunge ' 0.78(M/MSgrA∗)
year. The factor of 2 in Eq. (14) is because the strongest
GW harmonic is the m = 2 mode. For systems with
R . 4.3 AU [as examined in Eq. (3)], the time till plunge
is ∼ R4 [c.f. Eq. (1)]. As such, the fraction of the popula-
tion undergoing tidal resonances scales as (R/4.3 AU)4.
However, it is important to note that the effect should
be generally smaller for lighter massive BHs with less
number of EMRI inspiral cycles.

To estimate the phase resolution of EMRI measure-
ment, we adopt the Fisher-information analysis presented
in [26, 27]. The statistical phase uncertainty roughly
scales as

√
D − 1/SNR, where D is the number of in-

trinsic source parameters in the waveform, and SNR is
the measured signal-to-noise ratio. By the Monte-Carlo
study of [28], the number of EMRIs detected by LISA is
likely to be O(10)−O(103) per year at an SNR detection
threshold of 20. As SNR roughly scales as 1/d (with d

distance to Earth) and the number of sources per unit
distance scales as d2, we can estimate the average SNR
of detected events to be ∼ 30. We thus roughly estimate
the phase resolution to be ∆Ψ ∼ 0.1. This suggests that
the phase shift estimated in Eq. (14) should be easily
detectable. A significant fraction of EMRIs are likely to
experience tidal resonances that induce ∆Ψ ≥ 0.1. Even
if this holds for only 10% of EMRI events, this corre-
sponds to O(1)−O(100) events per year.

The above estimate is based on a particular resonance
for a single EMRI orbit. A more rigorous calculation
should survey a generic distribution of EMRI parameters
and the mass/spin distribution of all host BHs. It will
also be important to include the influence of other signals
which are simultaneously “on” during LISA observation,
such as massive black hole inspirals, close white dwarf bi-
naries in our galaxies, and other EMRI events which are
being observed contemporaneously. Most EMRI evolu-
tions will cross multiple tidal resonances before plunge, as
shown by the red dots in Fig. 2. At early times, there are
several resonances with duration comparable to the ini-
tial resonance which may contribute a comparable phase
shift. Many short-lived tidal resonances cluster before
the plunge due to the EMRI’s rapidly changing orbital
frequencies. Although their individual influence on the
orbital phase is likely to be small compared to the ini-
tial resonance, there are many contributions. These late
resonances may also overlap, yielding collective effects.

Discussion. Similar to the Newtonian Kozai-Lidov ef-
fect, close orbits in a Kerr spacetime satisfying Eq. (6)
can be resonantly excited by an external tidal field, re-
sulting in a secular shift in its orbital angular momentum
[37]. As EMRIs and tidal disruption events are strongly
connected to the stellar clusters near massive BHs, their
rates and associated population study can be used to
constrain the stellar distribution models by solving the
inverse problem and further provide more insight into
the growth history of massive BHs [2, 29–31]. Through
a similar argument, as close stellar-mass BHs near galac-
tic centre come from the stellar cluster by scattering and
mass segregation, observing tidal resonance will provide
distance information about closest stars and BHs near
EMRIs, probing the outliers of the stellar mass distribu-
tion in galactic centers. This information will come at the
cost of a more complicated EMRI waveform model. Much
effort is currently going into making accurate self-force-
based EMRI models, iterating in perturbation theory to
second order in the mass ratio, and including effects like
the impact of the smaller body’s spin. Tidal resonances
– if not carefully modeled for – may ultimately limit the
precision to which it is worthwhile to make these wave-
form models. When testing General Relativity (GR) with
EMRI observations in LISA, it is important not to miss
attribute environmental effects as signals of GR violation.

The Mathematica notebooks used for these calcula-
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tions, including the metric perturbation and computation
of Gi, are available upon request.
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