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In contrast to elementary Majorana particles, emergent Majorana fermions (MFs) in condensed-
matter systems may have electromagnetic multipoles. We developed a general theory of magnetic
multipoles for helical MFs on time-reversal-invariant superconductors. The results show that the
multipole response is governed by crystal symmetry, and that a one-to-one correspondence exists
between the symmetry of Cooper pairs and the representation of magnetic multipoles under crystal
symmetry. The latter property provides a way to identify unconventional pairing symmetry via the
magnetic response of helical MFs. We also find that most helical MFs exhibit a magnetic-dipole
response, but those on superconductors with spin-3/2 electrons may display a magnetic-octupole
response in leading order, which uniquely characterizes high-spin superconductors. Detection of such
an octupole response provides direct evidence of high-spin superconductivity, such as in half-Heusler
superconductors.

Introduction. The emergence of Majorana fermions
(MFs) in electron systems has led to intense interest in
searching for such exotic new excitations in condensed-
matter physics. Particularly, recent developments have
shown that emergent MFs appear as gapless Andreev
bound states in topological superconductors (TSCs) [1–
14], which provide a potential candidate for fault-tolerant
qubits for topological quantum computation [15]. The in-
creased interest in topological materials has led to a pro-
posal of versatile three-dimensional (3D) time-reversal-
invariant (TR-invariant) TSCs, such as superconduct-
ing doped topological insulators (TIs) [16–23] and Dirac
semimetals [24–30], which commonly host helical MFs
forming Kramers pairs on their surfaces.

Emergent MFs share some properties with elementary
Majorana particles [31, 32]: Both of them obey Dirac
equations with charge-conjugation symmetry. Further-
more, a pair of MF zero modes are required to define
the fermionic creation and annihilation operators, from
which zero modes exhibit non-Abelian anyon statistics.
However, compared with elementary Majorana particles,
emergent MFs respond very differently to electric and
magnetic fields. On the one hand, neither electric nor
magnetic multipoles are possible for elementary MFs
[33–35]: CPT invariance, where C is charge conjuga-
tion, P is space inversion, and T is time reversal, is a
fundamental symmetry that any relativistic elementary
particles is expected to respect. This symmetry forbids
intrinsic electric and magnetic multipoles for elementary
Majorana particles because they are their own antipar-
ticles under CPT . On the other hand, in superconduc-
tors, fundamental symmetry is just charge-conjugation
(namely, particle-hole (PH) symmetry), and the emer-
gent MFs are self-conjugate under C. Therefore, MFs
in condensed-matter physics are not subject to such a
strong constraint, and no systematic study on their elec-

tromagnetic multipoles has yet been attempted.

In this Letter, we develop a theory describing the elec-
tric and magnetic response of MFs in superconductors.
For clarity, we focus here on surface helical MFs on 3D
TR-invariant TSCs. A key ingredient specific to emer-
gent MFs is crystalline symmetry. In analogy with CPT
invariance for elementary MFs, crystal symmetry pro-
vides additional symmetry constraints on electromag-
netic structures of emergent MFs. Considering the con-
straints, we establish a response theory for helical MFs
in a low-energy limit, in which the problem reduces to
the selection rule for crystal-symmetry groups. Apply-
ing our theory to possible crystal-symmetry groups, we
find that helical MFs can host magnetic-multipole struc-
tures of dipole or octupole orders as the leading con-
tribution. Additionally, the results predict a one-to-one
correspondence between irreducible representations (IRs)
of Cooper pairs and magnetic multipoles, which helps to
determine the pairing symmetry experimentally through
the magnetic response of MFs.

Particularly, the proposed theory provides a unique
way to identify topological superconductivity of spin-3/2
electrons. Although research interest has recently fo-
cused on high-spin topological superconductivity [29, 36–
51], little is known about distinguishing TSCs of spin-3/2
electrons from those of spin-1/2 electrons. We clarify
here that magnetic responses of helical MFs can unam-
biguously distinguish between these two types of SCs be-
cause the magnetic-octupole response is unique to high-
spin TSCs. To illustrate this, we apply the proposed
theory to superconducting TIs of ordinary spin-1/2 elec-
trons [17] and parity-mixed half-Heusler superconductors
of spin-3/2 electrons [41, 43]. The results of both numer-
ical and analytical analyses show that only the latter ex-
hibits the octupole response under the same crystalline
symmetry.
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FIG. 1. MFs with gapless point and line in the surface Bril-
louin zone (BZ) that are protected by two-fold rotation and
mirror reflection, respectively.

Majorana multipole. Helical MFs are a superconduct-
ing analogue of surface Dirac fermions of TIs and can
be realized in 3D TR-invariant TSCs. From the bulk-
boundary correspondence, the existence of helical MFs is
ensured by the so-called 3D winding number [4, 5, 52, 53].
Whereas the 3D winding number is defined only for fully
gapped TSCs, its parity is well defined even for nodal
superconductors [18]. Provided TR symmetry is main-
tained, these invariants are well defined and protect sur-
face helical MFs for both nodal and nodeless supercon-
ductors.

We consider the quantum response of helical MFs when
exposed to external electric or magnetic fields. First, we
notice that electric fields only give moderate responses
from helical MFs: Since electric fields keep TR symme-
try, helical MFs remain gapless so they cannot response
so much. Conversely, magnetic fields may substantially
affect them. Magnetic fields break TR symmetry, so the
3D winding number and its parity become invalid. How-
ever, this does not mean that helical MFs are not im-
mune to any magnetic fields because actual TSCs have
their own crystalline symmetry. Depending on the direc-
tion of the applied magnetic field, TR symmetry may be
partially preserved by combining it with crystalline sym-
metry. Such magnetic crystalline symmetry determines
the stability of helical MFs under magnetic fields [54].

As relevant point group operations, we consider rota-
tions and mirror reflections that are compatible with the
surface. The rotation axis and the mirror plane should
be normal to the surface (see Fig. 1). We consider
any surface-preserving point group G formed by them:
G = C2,C3,C4,C6,Cs,C2v,C3v,C4v,C6v, in addition to
TR symmetry T . (G contains only the unbroken part
of crystalline symmetry, if Cooper pairs spontaneously
break a part of it.) Under a magnetic field, we retain
magnetic two-fold rotation or magnetic mirror reflection.
Note that the retained magnetic symmetry is selected
by the direction of an applied magnetic field. Only for a
magnetic field normal (parallel) to the rotation axis (mir-
ror plane), magnetic two-fold rotation (magnetic mirror

reflection) is preserved: The above magnetic field is easily
seen to flip under TR, but it points back to the original
when we simultaneously do a two-fold rotation (mirror
reflection).
The retained magnetic symmetry enables TSCs to host

an additional topological number that is valid even when
the TSC is exposed to a magnetic field: Let g0 ∈ G
be two-fold rotation or mirror reflection that defines the
magnetic symmetry. Combining the magnetic symme-
try with charge conjugation C, one can introduce the
magnetic chiral operator ΓM ∝ g̃0T C, which involves the
magnetic one-dimensional (1D) winding number wM1D

[55–59]. If wM1D for magnetic two-fold rotation (mag-
netic mirror reflection) is nonzero in the absence of mag-
netic fields, then helical MFs remain gapless even under a
magnetic field normal (parallel) to the rotation axis (mir-
ror plane), provided the system maintains the bulk gap.
On the other hand, helical MFs do not necessarily re-
main gapless under other magnetic fields. This direction
dependence results in an anisotropic magnetic response
of helical MFs. Note that wM1D for magnetic two-fold
rotation (magnetic mirror reflection) is defined on the
symmetric axis (plane), so it protects the gapless point
(line) of helical MFs at the symmetry axis (plane) in the
surface Brillouin zone (see Fig. 1).
The gapless points or lines are obtained as zero modes

|u(a)
0 〉 of the Bogoliubov-de Gennes (BdG) equation. (a =

1, 2 labels the Kramers degeneracy.) The index theorem

for wM1D[60] implies that the stable zero modes |u(a)
0 〉

have a common eigenvalue of ΓM, say

ΓM|u(a)
0 〉 = |u(a)

0 〉. (1)

since zero modes with opposite eigenvalues are easily
gapped in pairs. (This property is rigorously proven for
generic lattice systems [59].) Moreover, from crystalline

symmetry, the zero modes |u(a)
0 〉 should transform as a

(double-valued) representation under the action of G.
To systematically study the magnetic response of MFs,

we examine possible contributions of MFs to a local op-
erator Ô(x) = ĉ†σ(x)Oσ,σ′ ĉσ′(x) of electrons, where ĉ†σ(x)
and ĉσ(x) are the electron operators with internal degrees
of freedom σ such as spin and orbital, and Oσ,σ′ is a Her-
mitian matrix. The MFs have a nonzero response to ex-
ternal fields through such a local operator. For instance,
if MFs make a nonzero contribution to the electron-spin
operator Ŝi(x) = ĉ†σ(x)[si/2]σ,σ′ ĉσ′(x) with the Pauli ma-
trix si, then the MFs show a nonzero magnetic response
through the Zeeman term of electrons.
The contribution of MFs is evaluated as follows: In

the Nambu space with Ψ̂†(x) = (ĉ†σ(x), ĉσ(x)), Ô(x)
is recast into Ô(x) = (1/2)Ψ̂†(x)OΨ̂(x), with O =
diag(O,−OT ) = diag(O,−O∗), where we have used the
Hermiticity of O. Then, by performing the mode ex-

pansion of the quantum field Ψ̂(x) =
∑

a=1,2 γ̂
(a)|u(a)

0 〉+
(nonzero modes) and using the PH symmetry CΨ̂ = Ψ̂,
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TABLE I. Magnetic multipole for Kramers pair of MFs. From left to right, each column shows two-dimensional point groups
G, IRs of ∆ with wM1D 6= 0, the basis of ∆, g̃0 associated with ΓM, IRs of O, and the basis of O. Here, Ji are the spin matrices,
“−” means the absence of IRs, and O is the leading order of the magnetic multipole. We omit e−iπJy in the basis of ∆.

G IR of ∆ basis of ∆ g̃0 IR of O basis of O

C2,C4,C6 A k · J C2 A Jz

C3 − − − − −

Cs A kxJz, kxJy , kyJx, kzJx σv(yz) A Jx

C2v A2 kzJz C2 A2 Jz

B1 kxJz, kzJx σv(yz) B1 Jx

B2 kyJz, kzJy σv(xz) B2 Jy

C3v A1 kz(J
3
x − JxJyJy − JyJxJy − JyJyJx) σv(yz) A1 J3

x − JxJyJy − JyJxJy − JyJyJx

C4v A2 kzJz C2 A2 Jz

C6v A2 kzJz C2 A2 Jz

B1 kz(J
3
x − JxJyJy − JyJxJy − JyJyJx) σv(yz) B1 J3

x − JxJyJy − JyJxJy − JyJyJx

B2 kz(J
3
y − JyJxJx − JxJyJx − JxJxJy) σd(xz) B2 J3

y − JyJxJx − JxJyJx − JxJxJy

we obtain the coupling between Ô(x) and the MFs γ̂(a)

in the low-energy limit,

ÔMF =
1

2

∑

a,b=1,2

γ̂(b)γ̂(a)〈Cu(b)
0 |O|u(a)

0 〉

=
1

2
γ̂(2)γ̂(1)tr

[

Oρ(12)
]

, (2)

where ρ(ab) ≡ |u(a)
0 〉〈Cu(b)

0 | − |u(b)
0 〉〈Cu(a)

0 | and an irrele-
vant constant term has been omitted in the last line. A
non-zero ÔMF requires the following two conditions: (i)

There should be zero modes |u(a)
0 〉 that satisfy Eq. (1).

(ii) O should share the same IR with ρ(12) under the
action of G. As discuss below, the former condition de-
termines possible pairing symmetry of Cooper pairs, and
the latter decides possible magnetic responses.
We outline here how the condition (i) specifies the pair-

ing symmetry of Cooper pairs. First, we note that the
symmetry of Cooper pairs determines the commutation
relations between charge-conjugation and point group op-
erations. Let us consider the BdG Hamiltonian

H(k) =

(

E(k) ∆(k)

∆∗(k) −ET (−k)

)

, (3)

where E(k) is the Hamiltonian of the normal state and
∆(k) is the gap function of the superconducting state.
A point group G implies that gE(k)g−1 = E(gk) with
g ∈ G. The BdG Hamiltonian retains G if the Cooper
pairs have symmetry g∆(k)gT = eiθg∆(gk) (eiθg is a
phase factor) as it holds that g̃H(k)g̃−1 = H(gk), where
g̃ ≡ diag[g, e−iθgg∗] is the point group operator in the
Nambu space. Then, the charge conjugation C ≡ τxK
and g̃ obeys the relation g̃C = eiθgCg̃, where τi is the
Pauli matrix in the Nambu space and K is the complex-
conjugation operator. Note that T always commutes
with g̃ (and C), irrespective of the pairing symmetry.
For TR-invariant TSCs, eiθg must be real, so eiθg = ±1.

Thus, the gap function should be either even or odd un-
der g ∈ G, which leads to [C, g̃] = 0 ({C, g̃} = 0) for
g-even (odd) pairing symmetry.
As we discussed before, all zero modes, if exist, have

a common eigenvalue of ΓM. Combining this with the
result in the above, we can determine the pairing sym-
metry that is consistent with the presence of helical

MFs: Since a zero mode |u(1)
0 〉 and its Kramers part-

ner |u(2)
0 〉 ≡ T |u(1)

0 〉 have the same eigenvalue of ΓM,
we should have [T ,ΓM]=0. This relation determines the
phase ambiguity of the magnetic operator as ΓM = g̃0CT .
Then, using C2 = 1 and g̃20 = T 2 = −1, we obtain
[g̃0, C] = 0 so as to be consistent with Γ2

M = 1. This yields
that the gap function should be even under g0. Moreover,
any other g̃ ∈ G should not anti-commute with ΓM for
the same reason, so by considering the multiplication law
between g̃ and g̃0 as well, we can establish the commuta-
tion or anticommutation relation between C and g̃ [61].
The obtained set of commutation or anti-commutation
relations specifies the IR of the gap function under G,
namely the pairing symmetry of Cooper pairs. We sum-
marize it for given G and g̃0 in Table I.

Now we discuss the condition (ii). Since |u(a)
0 〉 and

|Cu(a)
0 〉 (a = 1, 2) are double-valued representations of

G, ρ(12) is their product representation. Thus, using the
standard group theory, we can decompose ρ(12) into IRs
under G, which determines the representation of O with
a nonzero ÔM. (See discussions in S2 of Supplemental
Material [61].) We find that O consists of a single IR,
which is summarized in Table I. Remarkably, the IR for
O coincides with the paring symmetry of Cooper pairs.
In other words, helical MFs respond to magnetic fields in
accord with the IR of Cooper pairs. This notable property
allows us to determine the pairing symmetry through the
magnetic response of MFs.
We note an additional constraint ΓMOΓ†

M = O as

Eq. (1) yields ΓMρ(12)Γ†
M = ρ(12). This constraint im-
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FIG. 2. (a) Surface states of half-Heusler superconductor in
(111) plane. The red line and red areas indicate helical MFs
with flat dispersion and the line-node-induced Majorana flat
bands. k1 = 1

√

3
(kx + ky + kz), k2 = 1

√

2
(kx − ky), and k3 =

1
√

6
(kx+ky−2kz). (b) Energy gap of helical MF at k2 = k3 = 0

as a function of B under the Zeeman magnetic field µB · J .

plies T OT −1 = −O as it holds that COC−1 = −O and
g̃0Og̃−1

0 = O. Therefore, O should be a magnetic oper-
ator, as we expected. In Table I, we provide a represen-
tative set of basis for the gap function and the magnetic
operator O.
Majorana octupole in spin-3/2 superconductors. Ta-

ble I reveals that MFs show a magnetic-octupole re-
sponse ∝ J3 when the surface has C3v or C6v symme-
try. This unique behavior is intrinsic to high-spin TSCs
of spin-3/2 electrons: In fact, the relevant basis vanishes,
J3
x−JxJyJy−JyJxJy−JyJyJx = J3

y−JyJxJx−JxJyJx−
JxJxJy = 0 for spin-1/2 electrons (Ji = σi/2).
To confirm this result, we calculate the magnetic re-

sponse of MFs in half-Heusler superconductors. In these
compounds [36–41], a strong spin-orbit interaction (SOI)
and high crystal symmetry provide a four-fold degenerate
band at the Γ point, which is well described by spin-3/2
fermions [43]. Additionally, recent experiments have sug-
gested the existence of parity-mixed superconductivity
with line nodes [40, 41]. We show here that the parity-
mixed superconductor exhibits a magnetic-octupole re-
sponse. Consider the low-energy model with Td symme-
try [43]:

HLK(k) =αk2 + β
∑

i

k2i J
2
i + γ

∑

i6=j

kikjJiJj

+ δ
∑

i

ki(Ji+1JiJi+1 − Ji+2JiJi+2), (4)

where i = x, y, z and i + 1 = y if i = x, etc., and Ji are
the 4× 4 spin matrices of spin-3/2 fermions. Because in-
version symmetry is absent, the Hamiltonian includes the
antisymmetric SOI, which is proportional to δ and causes
spin splitting at the Fermi surface. In their superconduct-
ing states, Cooper pairs form between spin-3/2 electrons,
which allows quintet and septet parings in addition to
the conventional singlet and triplet pairings [43, 62, 63].
Furthermore, the antisymmetric SOI generally mixes the

parity of the gap function, so the even- and odd-parity
components coexist in the gap function [64–68] and the
odd-parity component is aligned with the antisymmet-
ric SOI [65], providing the spin-septet pairing. Based
on this insight, the gap function is given by the mix-
ture of spin-singlet and spin-septet components, ∆(k) =

∆/
√

1 + η2[η14+
∑

i ki(Ji+1JiJi+1−Ji+2JiJi+2)]e
−iπJy ,

even when we choose the conventional A1 state of Td,
where η parametrizes the mixing between the spin-singlet
and spin-septet components and 1n is the n× n identity
matrix.
The superconducting state hosts six line nodes encir-

cling the kx, ky, and kz axis, in analogy with other parity-
mixed superconductors [60, 69–74]. Here, we focus on the
(111) surface because the magnetic-octupole response re-
quires C3v symmetry. To verify the existence of helical
MFs, we numerically diagonalize the BdG Hamiltonian
with the surface normal to the [111] direction and find a
helical MF with three flat dispersions (see Fig. S2 [61]),
as schematically depicted in Fig. 2(a). Each flat disper-
sion lies on the mirror planes with mirror-reflection sym-
metries, σ, C†

3σC3, and (C†
3)

2σ(C3)
2, where σ is mirror-

reflection with respect to the (11̄0) plane and C3 is three-
fold rotation around the [111] direction. Using these mir-
ror reflections, we obtain three ΓM and the associated
three wM1D, which protects zero modes on each flat dis-
persion. In particular, the three flat dispersions meet at
a C3 invariant point, at which the zero modes become
simultaneous eigenstates of ΓM and C3. To demon-
strate magnetic response, we add a Zeeman magnetic
term µB · J in Eq. (4), which leads to an anisotropic
response with C3v symmetry in Fig. 2(b). The Zeeman
magnetic term contributes to the energy gap of the MFs
on the order of 3

√
2µ3B3/32E2

F (See Fig. S3 [61]), where
µ is a coefficient of Zeeman term and EF the Fermi en-
ergy, implying a magnetic-octupole response.
Several remarks are in order. (i) We also examine the

magnetic response of a spin-1/2 TSC with C3v symmetry.
In sharp contrast to the spin-3/2 case, the helical MFs
ony show the dipole response (see the magnetic response
of superconducting TIs in Fig. S1 [61]). (ii) The octupole
response also appears in orbital magnetic effects since
the orbital magnetic terms [75–80] also should be the
same IR. (iii) Another high-spin superconductor of spin-
3/2 electrons was recently proposed for antiperovskite
materials with Oh group [28, 29]. We obtain a similar
magnetic-octupole response of MFs on the (111) surface
when its pairing symmetry is A2u of Oh.
Conclusions. In this paper, we develop a theory of

Majorana multipoles for 3D TR-invariant TSCs, which
provide novel experimental means to identify bulk pair-
ing symmetry and high-spin superconductivity. The Ma-
jorana multipoles may be observed through spin-sensitive
measurements such as spatially resolved NMR measure-
ments [81] or the surface tunneling spectroscopy under
magnetic fields [75–79, 82].
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