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Significant effort has been devoted to the study of “non-Fermi liquid” (NFL) metals: gapless
conducting systems that lack a quasiparticle description. One class of NFL metals involves a finite
density of fermions interacting with soft order parameter fluctuations near a quantum critical point.
The problem has been extensively studied in a large N limit (N corresponding to the number of
fermion flavors) where universal behavior can be obtained by solving a set of coupled saddle-point
equations. However a remarkable study by S.-S. Lee revealed the breakdown of such approximations
in two spatial dimensions. We show that an alternate approach, in which the fermions belong to the
fundamental representation of a global SU(N) flavor symmetry, while the order parameter fields
transform under the adjoint representation (a “matrix large N” theory), yields a tractable large N
limit. At low energies, the system consists of an overdamped boson with dynamical exponent z = 3
coupled to a non-Fermi liquid with self energy X(w) ~ w?/3, consistent with previous studies.

I. INTRODUCTION

In many strongly correlated quantum materials, con-
tinuous phase transitions into a broken symmetry phase
occur at zero temperature as a function of pressure, dop-
ing and other non-thermal tuning parameters. At such a
quantum critical point [I], the metallic fermions scatter
off of nearly critical fluctuations of the order parameter,
and new universal behavior, inconsistent with Landau’s
Fermi liquid paradigm, can occur. Understanding such
non-Fermi liquid (NFL) behavior [2 [3] and its relation
to high-temperature superconductivity is one of the cen-
tral challenges of theoretical physics. We study a class of
quantum critical points that preserve the underlying lat-
tice translational symmetry and are not associated with
a conserved order parameter —an example is the Ising
nematic transition, which has been observed in several
iron-based superconductors [4, [5], and may play a role in
other materials as well [6] [7].

Near the quantum critical point, only the slowest
modes are important; the problem can thus be recast
into a quantum field theory involving fermions near the
Fermi level coupled to a critical boson (order parame-
ter) by the lowest order interaction allowed by symme-
try. The leading interaction is a Yukawa-type coupling,
which is relevant in the renormalization group sense be-
low 3 space dimensions. As a consequence the theory is
strongly coupled in 2 space dimensions, the limit appli-
cable to many quasi-two dimensional quantum materials.
While in recent years numerical methods have revealed
a variety of strong coupling effects in two dimensions —
for instance via sign problem-free quantum Monte Carlo
simulations [8HI0]- an analytic solution based on a con-
trolled expansion remains elusive.

Given the absence of a perturbative coupling, it is nat-
ural to look for a large N expansion to restrict the class of
quantum effects that contribute. One possibility is to ex-
tend the number of fermion spins from 2 to IV, and have

them interact with a singlet scalar mode; this “vector
large N limit” has been intensely studied in the litera-
ture [ITHI8]. However, it was shown in [I5] that the the-
ory remains strongly coupled due to quantum enhance-
ments at two and higher loops. As a result, the 1/N
expansion is not enough to make the dynamics tractable.
There exist extensions of this limit that end up being con-
trolled, but this is achieved at the price of adding some
new perturbatively small parameter by hand [I9H23].

In this work we will instead focus on the “matrix large
N limit,” where N fermion flavors interact with an N x NV
matrix-valued boson. This 1/N expansion was originally
introduced in the context of relativistic quantum field
theory, in order to study Yang-Mills theory [24]. It was
first applied to NFLs in [25] 26], and a controlled quan-
tum critical point was shown to arise in an € expansion
around d = 3 spatial dimensions [27] 28]. We will study
this 1/N expansion directly in two spatial dimensions and
at zero temperature, finding an exactly solvable critical
point with non-Fermi liquid behavior. The exact solution
consists of an overdamped order parameter field with dy-
namical exponent z, = 3, coupled to a non-Fermi liquid
metal with fermion dynamical exponent z; = 3/2. Simi-
lar solutions have been obtained both in direct perturba-
tion theory [14], and in the vector large N limit.! Here,
however, they correspond to a controlled and asymptoti-
cally exact solution of an infrared fixed point. Our results
thus provide a controlled framework for understanding
non-Fermi liquid behavior.

The paper is organized as follows. In Sec. [l we present
the model and discuss the one-loop QCP. In Sec. [ITI] we
extend the validity of the QCP to all orders in the 1/N
expansion. We do this by determining a low energy limit

L See also [29] [30] for other methods that give similar self-energy
effects.



where the standard large N counting of planar and non-
planar diagrams applies. In Sec. [[V] we compare with
the vector large N expansion, which remains strongly
coupled; we track the difference to the qualitatively dif-
ferent behavior of the 't Hooft coupling. We also com-
pare our framework to the holographic approach to non-
Fermi liquids, and propose future directions of research.
In the Appendices we present an alternative and equiva-
lent renormalization-group analysis, as well as a scaling
analysis of a more general model that includes the vector
and matrix large N expansions.

II. THE ONE LOOP CRITICAL POINT

Our euclidean action involves a two-dimensional sys-
tem consisting of fermions (¢,) at finite density inter-
acting with a critical boson ¢:

S = /deQ:c{%Tr [012 (af¢)2+(v¢)2} (1)

+ ] (0 4 2(iV) = pp) O + %MI W}
To facilitate an asymptotically exact solution, we impose
a global SU(N) flavor symmetry, with ¢;,s = 1,--- N
transforming in the fundamental, and (Z)é-,i,j =1---N
in the adjoint representation. Here, we have tuned to
criticality by switching off the boson mass, ¢ is the bo-
son speed, the fermion has a dispersion relation E(E) and
chemical potential p g, and the two fields are coupled via
a cubic Yukawa interaction. This is the most relevant
interaction consistent with the symmetries, and we will
show that other interactions, such as the boson ¢* and
the BCS coupling, are irrelevant at the fixed point.

We will first analyze the critical point that arises at
one loop, and in Sec. [[I]| we will show that all the other
corrections vanish in 1/N. So the fixed point will turn
out to be one-loop exact in 1/N.

The kinematics of the Fermi surface and its coupling
to the boson will play an important role in the long dis-
tance dynamics. So let us first review the decomposi-
tion of fermionic and bosonic momenta. A given point
on the one-dimensional Fermi surface is parametrized by
the Fermi surface radius kr and a unit vector n. The
fermionic momentum is then written as a radial fluctu-
ation [3I], p = 7n(kr 4+ p1). The Yukawa interaction
implies that the boson momentum ¢ behaves as a differ-
ence of fermion momenta. Near the point 7 on the Fermi
surface, we will decompose ¢ = g7 + gj;, and will often
denote the relative angle by cosf = ¢ n/q.

One loop quantum effects induce boson and fermion
self-energy corrections; see Fig.[l] A standard calculation
gives the boson self-energy (Landau damping)

N 2mv /g5 + (vg)?

While this is a 1/N effect, we will include it because
it dominates at low energies. Including the effects of

(qo, q)

FIG. 1: One-loop quantum effects: boson self-energy (left),
fermion self-energy (middle), and vertex renormalization
(right). Boson and fermion propagators are denoted by wavy
lines and straight lines, respectively.

I1(qo,q), the boson spectral weight dominantly arises
from the kinematic regime |qy| < vg, where the char-
acteristic boson speed is slow compared to that of the
fermion, and where the boson mixes with the continuum
of particle-hole excitations of the Fermi surface. As a
result, the boson gets overdamped, and combining
with gives, at low energies, a boson with z = 3 scal-
ing, ¢° ~ M3|qo|. Here we have introduced the Landau
damping scale

ke g?
M} =— : 3

P= N 27mv? 3)
We will then work with the resummed bosonic propaga-
tor [II, 27]

which will be shown to be self-consistent.

The computation of the fermion self-energy using this
resummed overdamped boson propagator is standard and
results in the following expression:

g2
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The self-energy is a regular function of momentum, which
we have not included here, since it becomes irrelevant
due to the z = 3 scaling of the boson internal line. The
remaining one loop effect, the vertex correction, is sup-
pressed by 1/N, analogous to a “Migdal” approximation
in the electron-phonon problem, and can be neglected.

Eqgs. and describe a nontrivial QCP, where the
radial fermionic momentum scales differently from the
bosonic momentum [27] 28] [32]. It is not hard to check
that the scale transformations

w—=Aw, g — X q, g = N3, (6)
and

$(q0,9) = X 3¢(q0,9) , ¥(q0,9) = X" %P(q0,9) (7)

leave the IR effective action (which includes the above
self-energy corrections) invariant. As a result, we obtain



a quantum critical point where the boson has scaling di-
mension and dynamical exponent (A, = —% , 2p = 3),
and for the fermion, (Ay = —%, 25 = 2).2 The only
relevant coupling (besides the chemical potential) is the
boson mass, which we tune to criticality. The Yukawa
interaction becomes marginal at the fixed point, while
4-boson and 4-Fermi interactions are irrelevant. (This is
why we neglected them from the beginning). We note
that this fixed point agrees with the ¢ = 1 limit of the
NFL studied in [27, 28], in d = 3 — € dimensions.

Finally, let us determine the energy scale below which
we flow to the one-loop QCP. This is the crossover at
which the quantum self-energies begin to dominate over
the tree-level kinetic terms. This happens when the z = 3
regime is reached, which requires ¢3/c? < II(qo,q) and
¢ < (vg)?. Assuming we are near the mass-shell condi-
tion ¢* ~ M3 qo, this gives an energy scale

Sl 2 1/2 ,1/2
B < e i ),

~ 7 N1/2 v c

III. QUANTUM CRITICALITY AT ALL

ORDERS IN 1/N

Including the self-energy effects described in the pre-
vious section, we obtain a one-loop QCP with effective
Lagrangian

Legg=Ls+ Ly + Ly (9)

where

Ly = /dpl (kpdi) ] (iﬂNl/BSgH(pONPOF/S - UpL) Ya
_ 2 2, 7 lqol

Lb—/d<1¢<q +Nq>¢ (10)

Iy = % [ Padp (edi) 6004 v + a)nlr).

Here we have introduced the combinations
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Since our focus is on the low energy dynamics, all mo-
menta are much smaller than kp. This is why in the
third line of the two fermions are at the same point
7 of the Fermi surface.

Using the 1/N expansion, we now want to extend this
to all loop orders. This, however, encounters some prob-
lems due to the fact that the explicit N dependence in
the propagators precludes the standard large N counting
of planar and non-planar diagrams. In particular, some

_ kpg?
o2’

f= (1)

2 These are the dimensions in momentum space representation, as
in @

terms that are irrelevant by the power-counting of @,
are actually enhanced by N. A simple example occurs in
the bosonic propagator. Here ¢% is irrelevant compared
to qﬁ, but the N-scaling, dictated by the on-shell condi-

tions, is q; ~ N1/3q§/3, q) ~ 1/N1/3qé/3. So qf_ > qﬁ at
fixed energy. In other words, the low energy limit does
not commute with the large N limit.

We will now argue that the low energy and large N
limits can be taken simultaneously, if the external fre-
quencies and momenta scale in a specific way with V.
To see this, we note that the previous problem —the large
N limit ruining the z = 3 scaling— is resolved if the low
energy limit is taken as go ~ 1/N2. Indeed, this makes q
and ¢ above scale with the same power of N. Therefore,
we will consider the redefinition

1 _ 5 _ ,yl/3 ~

Po = ﬁpo yPL = NPJ_ y P = TPH . (12)
We will show that correlation functions with fixed (po, ;)
are described by a QCP that is one-loop exact in the 1/N
expansion. Before proceeding, we also note that we have
introduced factors of 3,7 in , so that the engineer-
ing dimensions of the new variables, [pg] = 1, [p.] =
2/3, [p)] = 1/3, match the scaling dimensions @ of the
one-loop fixed point.

The redefinition produces overall powers of N and
(8,7) in the two-point functions. However, these factors
cause no problem, as they can be absorbed into the redef-
inition of fields. The canonically normalized fields, where
these factors are absorbed, become

kL2 1/2

Given the engineering dimensions (in Fourier space)
[] = =2, [¢] = —5/2, the dimensions of the canoni-
cal fields become [x] = =7/6, [p] = —4/3. As expected,
these agree with the scaling dimensions . The last step
replaces these redefinitions in the Yukawa coupling; the
resulting effective action S.rf = Sy + Sy + Sy reads

Sy = /dpodpl dn XIAI (ngH(p0)|po|2/3 - Upl) Xn
_ 5 laol
Sy = [ dgodqidg) ¢ | g~ + v @ (14)
s .
Sy = dgodpodq 1 dgydp. divp(q)xt(pa)xa(p) .

VN

and we have dropped all the tildes from the frequencies
and momenta. The coupling evaluates to

2
g—*:27r\/§.

U (15)

This plays the role of the 't Hooft coupling at the fixed
point. In the Supplemental Material at [URL will be in-
serted by publisher|, we show that the above fixed point



action can equally well be captured by a renormal-
ization group treatment. Indeed, the scalings and redefi-
nitions that we just performed are automatically included
in the RG approach in terms of the running parameters.

Since the fixed point theory has an order one ’t Hooft

J

2 dko dk, df 1
M(go,q) = % LR

coupling, we expect that we have to resum all planar
diagrams that contribute to . Fortunately, they all
vanish beyond one loop. This can be seen by noting that
planar corrections to the self-energies are resummed in
terms of the Schwinger-Dyson equations

1

o [ dqo qdq db 1

N | 27 2m 27 iko +iX(ko) — vk i(ko + qo) + i3 (ko + qo) — v(kL + gcosb)

1

i%(po)

Diagrammatically, replacing the one-loop contribu-
tions in the right hand side of gives rise to two-
loop planar diagrams for II and ¥, and this continues
by induction to higher-loop planar diagrams. By explicit
calculation, and provide a solution to , so long
as the low energy limit is taken as in .3 In summary,
the one loop result is a self-consistent solution to the
Scwhinger-Dyson equations, and all planar contributions
beyond one loop vanish in the low energy limit .

On the other hand, all nonplanar corrections to the
QCP are explicitly suppressed by powers of 1/N. This
can be seen directly from : the usual large NV counting
of diagrams applies, because IV only appears in the cubic
interaction and not inside the two-point functions. This
is a consequence of the way in which the low energy and
large N limits are taken in .

Let us also mention that the tree-level irrelevant con-
tributions to the kinetic terms —the boson and fermion
frequency terms, and the higher order term p?% /kr in the
fermion dispersion relation— can also be seen to be sup-
pressed by powers of 1/N compared to the critical terms.
The same occurs with terms that have four or more fields
in the action. As a result, none of the irrelevant correc-
tions to the QCP are enhanced by powers of N.

We conclude that the one-loop QCP is exact to
all orders in 1/N. Tt arises in the simultaneous large N
and low energy limit dictated by , with (po, p;) fixed.
This QCP thus provides an example of a solvable non-
Fermi liquid in two spatial dimensions.

IV. DISCUSSION AND CONCLUSIONS

We have shown above that the matrix large N limit
provides a controlled set of solutions describing the two
dimensional quantum critical metal. This was achieved
by taking a simultaneous large N and low energy limit

3 Above this window, the z, = 3 and zy = 3/2 scalings are not
preserved.

27 2w 27 q% 4 11(qo, q) iqo + 2(q0) — vgcos

(16)

(

. The solvability of the 1/N expansion may appear
surprising, both from previous results on the vector large
N limit [I5], and because in general it is very hard to
resum the planar expansion in relativistic quantum field
theory [24], 33 B4]. In order to address this, let us now
briefly discuss the problem from the viewpoint of the
renormalization group (RG).

The self-consistency of the quantum effective action
implies an IR stable RG fixed point. In the Supple-
mental Material at [URL will be inserted by publisher],
we show how this result can equally well be captured by
a renormalization group treatment. We summarize here
the essential features. In the vicinity of the fixed point,
the one-loop beta function for the combination a ~ g2 /v
is

—ufl—z = cia — ca?, (17)
where, 4 is the sliding energy scale (the RG flow param-
eter), and ¢y, co are positive order one constants. The
first term above describes the tree-level scaling behav-
ior of a at low energies, while the second term contains
the effects of quantum self-energy corrections (recall that
vertex corrections can be neglected in the large N limit).
As a consequence, there is an IR stable fixed point with
an order unity fixed point value a,, ~ O(1). This fixed
point precisely corresponds to the action , where a
z = 3 boson is coupled to a non-Fermi liquid with an
order unity 't Hooft coupling (15).

By contrast, in the vector large N limit, the fermion
self-energy is a 1/N correction. As a consequence, the
analogous RG flows are described by an equation of the
form

C/
=cla— 2a2, (18)

and the resulting fixed point value corresponds to a, ~
N. This theory remains strongly coupled at the pur-
ported fixed point and we lose theoretical control. This
is the essence of the problem noted in [I5]. We explore
this further in the Supplemental Material at [URL will
be inserted by publisher|, where we construct a scaling



theory of the vector large N limit by rescaling momenta,
frequency and redefining fields. This rederives an action
analogous to Eq. with a 't Hooft coupling of order
N, showing that the theory flows to strong coupling even
at leading order in the large N expansion.

Let us also compare our results with the planar limit of
non-abelian gauge theories, and more generally with large
N conformal field theories (CFTs). In this case, there is
an infinite number of planar diagrams, whose resumma-
tion can often be described by a classical gravitational
theory in one more dimension [33] (and see e.g. [34] for a
review). In contrast, here we have found a finite number
of planar diagrams that are ultimately responsible for the
QCP. The main difference is that in relativistic theories it
is necessary to resum the effect of relevant single-trace in-
teractions of the matrix fields, such as tr(¢*). This gives
rise to an infinite class of planar graphs that contribute.
On the other hand, in the nonrelativistic setup of this
work, the analog single-trace interactions are irrelevant.
This leads to a finite class of diagrams whose effects can
be taken into account exactly in the 1/N expansion.

In recent years, gauge/gravity duality has provided an-
other framework for obtaining NFLs. See [35H3§] for
some of the original works, and [39-41] for reviews with
additional references. These NFLs can be minimally de-
scribed by coupling a strongly interacting large N CFT
to a Fermi surface [42]. The CFT dresses the Fermi sur-
face into a NFL with self-energy ~ w?2~1, where A is
the dimension of the CFT operator that couples to the
fermions. On the other hand, the backreaction of the
fermions on the CFT is a negligible 1/N effect. Here
we find some similarities with our framework, where the
N x N order parameter ¢ gives rise to a NFL behav-
ior ~ w?/3. One important difference, however, is that
the dynamics of the ¢ field itself is produced by its cou-
pling to the Fermi surface, and does not need to be put
in by hand. In any case, the flexibility of these semi-

holographic Fermi liquids suggests generalizations of the
theory studied in this work, where an overdamped N x N
boson with dynamical exponent z; is coupled to a Fermi
surface with N fermion flavors. We hope to consider this
in future work.

To conclude, we have identified a solvable matrix large
N limit in which a two dimensional non-Fermi liquid
arises at a quantum critical point. The theory has iden-
tical universal power laws to those conjectured in the
vector large N theories. In the future, we wish to study
the interplay between non-Fermi liquid behavior and su-
perconductivity in such systems, as well as to study fi-
nite temperature thermodynamic and transport proper-
ties using the large N expansion. Lastly, we comment
here that while the solvable large N limit provides in-
sights into the nature of quantum materials, it remains
unknown whether the precise power laws are the same in
realistic systems with N ~ 1.
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