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Spontaneous pattern formation plays an important role in a wide variety of natural phenomena
and materials systems. A key ingredient for the occurrence of modulated phases is the presence
of competing interactions, generally of different physical origins. We demonstrate that in dipolar
films, a prototypical system for pattern formation, patterns can be induced by dielectric effects
alone. A rich phase diagram arises, where striped and circular morphologies emerge with geometric
properties that can be controlled through variation of particle shape and substrate permittivity or
permeability. These effects are particularly enhanced by metamaterial substrates.

Spontaneous pattern formation and modulation of
phases in two dimensions occur in a diverse set of physi-
cal, chemical, and biological systems [1, 2]. The domains
can exhibit a variety of patterns—notably stripes, is-
lands, and circular droplets—that are often characterized
by spatial periodicity. Examples include the orientational
patterns in ferromagnetic thin films [3–5], the domain
structure of dipolar Langmuir monolayers [6, 7], and
microphase separation in block copolymer melts [8, 9].
These phenomena have significant potential for techno-
logical applications, such as nanofabrication [10, 11] and
nanomagnetism [12].

One of the central common, and in fact necessary,
factors underlying pattern formation in thermodynamic
equilibrium is the presence of competing interactions [1,
2]. Dipolar interactions, so ubiquitous in nature, have
emerged as the most basic and widely studied starting
point. Yet, a second potential is required for modulated
patterns to appear, such as the short-range exchange in-
teraction [4, 13, 14], interfacial energy [6, 7], geometric
constraints [15–17], or an external field [18, 19]. No mod-
ulated phases have been reported in systems with solely
dipolar interactions.

Two-dimensional (2D) dipolar systems exhibit a rich
phase diagram [20–24], with an isotropic–polymeric
phase transition at low surface densities [21, 24] and more
complicated structures as well as orientational ordering
at high densities [20, 22]. Although these systems have
received widespread attention, a parameter that has been
mostly ignored (with dipolar particles confined between
metallic plates as a notable exception [25, 26]) is the di-
electric mismatch between the substrate and the medium
containing the dipolar particles. This omission is note-
worthy, given the demonstrated effect of substrate per-
mittivity on properties of a wide range of electromag-
netic systems, from plasmonics [27] to ion mobilities in
electrolytes [28]. Moreover, with the emergence of elec-
tromagnetic metamaterials [29, 30], in which the electric
permittivity and/or magnetic permeability are negative,
the magnitude of polarization effects can be greatly en-

hanced [31, 32].

Here, we demonstrate that variation of dielectric mis-
match can qualitatively alter the orientational phases of
(quasi-)2D dipolar systems. Remarkably, even modulated
phases can be induced in purely dipolar systems, with-
out the need for external fields or other interactions. We
elucidate the origin of the different phases and map the
corresponding phase diagram. In addition, we illustrate
how even within an individual phase the characteristic
length scale can be accurately controlled. Throughout
this work, we employ electric dipoles, yet all our find-
ings are directly applicable to magnetic dipolar systems
as well [33]. There, tuning of the interfacial dielectric
contrast must be replaced by variation of the permeabil-
ity of the substrate. Experimental realizations of the
model studied here include charged Janus colloids [34]
and ferromagnetic particles. Various aspects of this work
pertain to metamaterial substrates with negative static
permittivity or permeability. Whereas the former can be
realized in a wide range of materials (e.g., metals [35, 36],
quasi-2D crystals [37], and nanoparticle [38, 39] and poly-
meric systems [40]), the latter can be realized by includ-
ing active components in artificial metamaterials [41].

We examine monolayers of N = Nx×Ny spheres of di-
ameter d that each carry a point dipole µ. To minimize
the influence of the underlying lattice [14], the particles
are placed on a hexagonal lattice with lattice constant a
and dimensions Lx = Nxa, Ly =

√
3Nya/2, periodically

replicated in the x and y directions. All particles have
fixed z-coordinate d/2 and are embedded in a medium
with uniform permittivity εm. The substrate has per-
mittivity εs, so that there is a dielectric mismatch at
z = 0. We study this system via Monte Carlo simula-
tions in the canonical ensemble where only 3D rotations
of the dipoles are permitted. Owing to the piecewise
uniform permittivity, the electric dipoles induce surface
polarization charge at the substrate interface. Mathe-
matically, the influence of this polarization is most con-
veniently phrased in terms of “image” dipoles, centered
at z = −d/2 and with dipole moment µ′ (Fig. 1).
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FIG. 1. Schematic depiction of a system of 2D hexago-
nally packed dipolar spheres immersed in a uniform dielectric
medium with permittivity εm above of a dielectric substrate
with permittivity εs. To account for the polarization charges
induced at the interface, we employ “image” dipoles (dashed
circles). (a) For high-permittivity substrates (as well as for
metamaterials with sufficiently negative permittivity), the in-
plane component of these induced dipoles is anti-parallel to
their counterpart above the surface, whereas the perpendic-
ular component is parallel. (b) For substrate materials with
small absolute permittivity, the situation is reversed. In both
cases, nonintuitive collective behavior can emerge, since the
images are induced by individual dipoles, but interact with
all other dipoles above the substrates.

The Hamiltonian of the system is characterized by
two energy scales, the interaction between neighboring
dipoles λdd = µ2/(εma

3kBT ) and the dipole–image cou-
pling λdi = γµ2/(εmd

3kBT ) = γλdd/α
3, where γ =

(εm − εs)/(εm + εs) is the dielectric mismatch, α = d/a
is reduced by the lattice constant a, µ = |µ|, kB is Boltz-
mann’s constant, and T the temperature. We choose a as
the unit length and use a tilde to denote reduced lengths.
The Hamiltonian reads

H
kBT

=
1

2

N∑
i=1

∞∑
n

λdd
N∑
j=1

′ µ̂i · µ̂j − 3(µ̂i · r̂repij )(µ̂j · r̂repij )

|r̃repij |3

+λdi

N∑
j=1

µ̂i · µ̂′j − 3(µ̂i · r̂′repij )(µ̂′j · r̂
′rep
ij )∣∣1 + |r̃repij /α|2

∣∣3/2
 ,

where µ̂i = µi/µ and µ̂′i = (µi,x, µi,y,−µi,z)/µ. The
periodicity of the lattice is accounted for via summa-
tion over n = (nx, ny, 0) (nx, ny ∈ Z), where the prime
indicates that i 6= j for n = 0. The vector r̃repij =

(r̃j,x−r̃i,x+nxL̃x, r̃j,y−r̃i,y+nyL̃y, 0) points from dipole i
to (a replica of) dipole j, with corresponding unit vector
r̂repij , and r̃′repij = (r̃j,x− r̃i,x+nxL̃x, r̃j,y− r̃i,y+nyL̃y,−α)
points from dipole i to (a replica of) image dipole j, with
corresponding unit vector r̂′repij . Whereas λdd and λdi
control the total contributions of the dipole–dipole (D–
D) and dipole–image (D–I) interactions to the system
energy, respectively, the geometric factor α determines
the ratio between the second-order (and higher) contri-
butions to the D–I interaction (i.e., between dipoles and
images of other dipoles) and the first-order D–I interac-
tion (between dipoles and their own images), which only

depends on λdi (which we regard as independent of α as
it can be controlled via γ). The observation that α can
serve as an independent control parameter has profound
consequences for the tunability of patterns that arise for
different choices of the coupling strength and dielectric
mismatch, as we will explore below.

In practice, we compute the energy via 3D dipolar
Ewald summation (relative precision 10−5) modified to
include image charges and supplemented with a slab cor-
rection [42]. For each parameter choice, we employ 5×105

Monte Carlo cycles of N rotational moves.
To quantify the global orientational order, we intro-

duce the parameters P1 and P2 [43]. For an instanta-
neous configuration, P2 is the largest eigenvalue of the
ordering matrix Q = 1

2N

∑N
i=1(3µ̂iµ̂i−I), where I is the

identity matrix. The corresponding normalized eigenvec-
tor is the global director d̂ from which the instantaneous
value of P1 follows as P1 = 1

N |
∑N
i=1 µ̂i · d̂|. Whereas P2

merely characterizes global alignment (nematic order) of
the dipolar particles, P1 is a measure of the global polar-
ization. The degree of uniaxial alignment (along the z

axis) is quantified by Qzz = 〈 1
2N

∑N
i=1(3µ̂2

i,z−1)〉, where
Qzz vanishes in orientationally isotropic states, whereas
Qzz = −0.5 and Qzz = 1 reflect configurations of per-
fectly in-plane or out-of-plane dipoles, respectively.

To establish a baseline, we examine a system of
dense-packed spheres (α = 1) in the absence of dielec-
tric contrast at the interface (γ = 0). In this case,
the energy is minimized by head-to-tail chains, yielding
an in-plane ferroelectric (IF) state at strong couplings
(Fig. 2a) [20, 21]. Note that this is indeed a global, long-
range ferroelectric order, unlike the vortex-like structure
observed for quasi-2D dipolar spheres with positions that
are not constrained to a lattice structure [21]. This ten-
dency of dipolar interactions to favor arrangements with
in-plane orientation is enhanced in the presence of low-
permittivity substrates (γ > 0), since the interaction en-
ergy of dipoles with the induced surface charge is also
minimized for such configurations. More interesting is
the situation of substrates with a higher permittivity
than the medium (γ < 0), where this energy is mini-
mized for perpendicular dipoles. The resulting competi-
tion between the dipole–dipole interactions favoring in-
plane ferroelectric ordering and the dipole–polarization
interaction favoring out-of-plane configurations raises the
possibility of a dielectrically induced structural transi-
tion.

The magnitude of polarization effects, especially the
first-order D–I interaction, is controlled by λdi. This cor-
responds to the surface anisotropy in magnetic films [15],
which promotes the out-of-plane orientation of dipoles.
λdi can be varied by either the dielectric mismatch at
the interface γ or the geometric ratio α. Decreasing the
latter from α = 1 to α = 2

3 while keeping λdd = 5 leads
to λdi = −16.875 for a perfectly conducting substrate
(γ = −1). As shown in Fig. 2b, this indeed transforms



3

(a) (b)

(c) (d)

α↘

Bubble merging

γ ↗

γ ↗

γ ↗

FIG. 2. Typical structures formed by N = 100× 114 dipolar
spheres placed on a 2D hexagonal lattice at dipolar coupling
λdd = 5. (a) Representative partial (30 × 30) configuration
in the absence of dielectric contrast (εs = εm, so γ = 0 and
λdi = 0) and at packing α = 1, showing an IF phase with
P1 = 0.88, P2 = 0.68, Qzz = −0.43. (b) Same subsample
on a perfectly conducting substrate (εs = +∞, γ = −1) with
geometric ratio α = 2

3
, so that the dipole–image coupling is

raised to λdi = −16.875. This results in an OAF phase with
P1 = 0.01, P2 = 0.79, Qzz = 0.78. (c) Snapshot of the full
dense-packed (α = 1) system on a metamaterial substrate
with γ = −1.6, exhibiting a bubble phase with P1 = 0.01,
P2 = 0.23, Qzz = −0.12. (d) As the dielectric contrast is
increased further to γ = −3, the bubble phase transforms to
a stripe-like phase with P1 = 0.01, P2 = 0.34, Qzz = 0.12.
Between the bubble and stripe phases, the bubbles gradually
merge into stripes, see snapshot between panels (c) and (d),
for γ = −2. Colors characterize the different phases: IF phase
– green; OAF phase – red; bubble phase – yellow; stripe phase
– blue.

the IF state into a state with out-of-plane orientation.
Owing to the strong interaction of the dipoles with their
own images, they are predominantly aligned with the z-
axis, so that P2 and Qzz are close to 1. Simultaneously,
the nearest-neighbor dipolar interaction is minimized by
an antiparallel arrangement, i.e., an out-of-plane anti-
ferroelectric (OAF) state with P1 ≈ 0. This structure
is confirmed by the orientational pair correlation func-
tion (not shown). Experimentally, α can be reduced by
increasing the lattice constant either through variation
of the particle shape or by employing a patterned sub-
strate to control the lattice structure [44]. Alternatively,
polarization effects can be enhanced (at fixed λdd) by
increasing the magnitude of dielectric mismatch γ. Al-
though |γ| is bounded by 1 for conventional materials
(i.e., the magnitude of an image dipole cannot exceed
the real dipole), this constraint is lifted for a negative-
permittivity material (or negative-permeability material
for magnetic dipoles) [31, 32]. Specifically, γ < −1
when εs < −εm. Remarkably, this additional control
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FIG. 3. Phase diagrams parametrized by λdd and λdi, at
different values of the geometric factor α: (a) α = 1; (b) α =
3; (c) α = 2

3
; (d) α = 1

3
. Colors characterize the different

phases: IF phase – green; OAF phase – red; bubble phase –
yellow; stripe phase – blue; disordered phase – pink. Phase
boundaries are drawn based on discrete simulation data points
with positions indicated by black dots in (a).

parameter gives rise to new modulated phases. At fixed
α = 1 and λdd = 5, increasing the dielectric contrast to
γ = −1.6 (λdi = −8) yields the “bubble” phase (Fig. 2c),
followed by the “stripe” phase (Fig. 2d) at γ = −3
(λdi = −15). The bubble and stripe phases both consist
of alternating ‘up’ and ‘down’ domains with a continu-
ous variation of the dipolar orientation, and only differ
in the shape of the domains. Neither of these phases
has a global polarization (P1 → 0 in the thermodynamic
limit), but due to their geometric difference they have
either slight global in-plane (bubble, Qzz < 0) or out-of-
plane (stripe, Qzz > 0) characteristics.

We construct the phase diagram of this system as λdd–
λdi sections for different fixed α (Fig. 3; see Supple-
mentary Material for an alternative representation of the
phase diagram). In addition to the four ordered phases
identified above (IF, OAF, bubble, stripe) we find a dis-
ordered phase at low λdd, |λdi|. When dipolar couplings
dominate, we observe the IF phase, which transitions to
either the OAF phase or the stripe phase upon increase
of |λdi|, when polarization interactions become dominant.
For larger geometric ratio α (Fig. 3a) the IF phase tran-
sitions to the stripe phase via a narrow region exhibiting
the bubble phase. This intermediate phase can be inter-
preted by noting that as |λdi| increases, the stripe phase
forms via merging of circular domains (Fig. 2, between
panels c and d), thereby reducing the area of the bound-
aries between oppositely oriented bubbles and thus the
fraction of in-plane dipoles. As α is increased further, the
stripe region grows at the expense of the IF and bubble
regions (Fig. 3b). Conversely, for small α (Fig. 3c,d) the
IF and disordered phases occupy larger regions of the
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phase diagram, and the OAF phase replaces the stripe
phase. Interestingly, when the competing parameters λdd
and |λdi| become large enough to overwhelm entropic ef-
fects, at fixed α only their ratio determines the phase of
the system (cf. diagonal phase boundaries in Fig. 3a,c,d).

What is then the role of the geometric factor α in the
phase diagram of Fig. 3? We focus on conditions with
strong polarization effects (large |λdi|), where the dipoles
are predominantly oriented out-of-plane. In addition to
the first-order D–D and D–I interactions characterized by
λdd and λdi, respectively, dipoles interact with the sur-
face polarization induced by other dipoles. The second-
order D–I interaction (between a dipole and its nearest-

neighbor images) is controlled by λ
(2)
di = λdi[α

2/(1 +
α2)]3/2 and grows in magnitude with increasing α, at
fixed λdi. For large α, its contribution to the total energy
becomes comparable to the first-order (direct) D–I inter-
action. Interestingly, precisely in this situation of large α,
the secondary images promote the parallel alignment of
neighboring dipoles (cf. dipolar field in Fig. 4a, left-hand
side), opposing (and overwhelming) the influence of the
direct D–D interaction between nearest neighbors. Thus,
the second-order D–I interaction acts as an ‘exchange

parameter’ with magnitude |D0| = | 2α
2−1

α2+1 λ
(2)
di | that pro-

motes short-range ferroelectric order (see Supplementary
Material for derivation). However, at larger distances the
dipolar coupling dominates and favors anti-ferroelectric
order, resulting in modulated (i.e., stripe and bubble)
phases. By contrast, at small α the ‘exchange parame-
ter’ D0 is not only smaller in magnitude, but owing to
the geometry of the dipolar field it also favors the same
anti-parallel alignment as imposed by the D–D interac-
tions (Fig. 4a, right-hand side, see Supplementary Ma-
terial for details). This explains why different values of
α result in modulated (stripe) or nonmodulated (OAF)
equilibrium phases at large |λdi|.

The stripe phase, in particular, has been the subject
of considerable attention [9, 13, 14, 45], notably its for-
mation mechanism in different systems and the degree
to which it can be controlled. Remarkably, the dielectric
modulation mechanism identified here allows fine control
over the stripe width w̃ via the geometric factor α. The
reduced stripe width is defined as w̃ = 〈N/Np〉, where
Np =

∑
〈jk〉H(−µj,zµk,z) is the number of dipole pairs

at stripe interfaces selected by the Heaviside function
H(x) = [1 + sgn(x)]/2. For fixed dipolar coupling λdd
and dielectric coupling λdi, the width of stripes can be
manipulated accurately through variation of the geomet-
ric factor, as illustrated in Fig. 4b via w̃ as a function of
α and D0, as well as accompanying representative snap-
shots. The stripe width accurately reflects an exponen-
tial dependence on D0 for sufficiently large w̃ (Fig. 4b),
in accordance with predictions based upon the asymp-
totic expression for the ground-state energy of a 2D Ising
dipole system [13]. Moreover, the domain-wall thick-

ness t, which is determined by the balance between the
exchange interaction D0 and the surface anisotropy λdi,
increases with α. This is consistent with the theoretical
prediction [46] that t scales as the square root of the ratio
between the exchange enery and surface anisotropy.

In conclusion, we have demonstrated that dielectric ef-
fects can induce modulated phases in quasi-2D dipolar
systems, without the presence of an additional compet-
ing interaction. Notably, the so-called striped and bub-
ble patterns can be realized in dipolar films on a sub-
strate with negative static permittivity and/or perme-
ability. Accurate control of the properties of these mod-
ulated phases is possible via a geometric factor, related to
particle shape and separation, which can be interpreted
in terms of an effective ‘exchange parameter’ promoting
local ferroelectricity. Besides elucidating the pattern-
modulation mechanism, our findings may also provide
guidance to future applications of such metamaterials.
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[17] N. Osterman, D. Babič, I. Poberaj, J. Dobnikar, and
P. Ziherl, “Observation of condensed phases of quasipla-
nar core-softened colloids,” Phys. Rev. Lett. 99, 248301
(2007).

[18] T. Garel and S. Doniach, “Phase transitions with sponta-
neous modulation – the dipolar Ising ferromagnet,” Phys.
Rev. B 26, 325–329 (1982).

[19] J. Dobnikar, A. Snezhko, and A. Yethiraj, “Emergent
colloidal dynamics in electromagnetic fields,” Soft Matt.
9, 3693–3704 (2013).

[20] V. Russier, “Calculated magnetic properties of two-
dimensional arrays of nanoparticles at vanishing temper-
ature,” J. Appl. Phys. 89, 1287–1294 (2001).

[21] J. J. Weis, J. M. Tavares, and M. M. Telo da Gama,
“Structural and conformational properties of a quasi-two-
dimensional dipolar fluid,” J. Phys.: Condens. Matter
14, 9171–9186 (2002).

[22] J.-J. Weis, “Simulation of quasi-two-dimensional dipolar
systems,” J. Phys.: Condens. Matter 15, S1471–S1495
(2003).

[23] P. D. Duncan and P. J. Camp, “Structure and dynamics
in a monolayer of dipolar spheres,” J. Chem. Phys. 121,
11322–11331 (2004).

[24] H. Schmidle, C. K. Hall, O. D. Velev, and S. H. L. Klapp,
“Phase diagram of two-dimensional systems of dipole-like
colloids,” Soft Matt. 8, 1521–1531 (2012).

[25] S. H. L. Klapp, “Monte-Carlo simulations of strongly in-
teracting dipolar fluids between two conducting walls,”
Mol. Simul. 32, 609–621 (2006).

[26] K. Takae and A. Onuki, “Applying electric field to
charged and polar particles between metallic plates: Ex-
tension of the Ewald method,” J. Chem. Phys. 139,
124108 (2013).

[27] M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and
N. J. Halas, “Substrates matter: Influence of an adjacent
dielectric on an individual plasmonic nanoparticle,” Nano



6

Letters 9, 2188–2192 (2009).
[28] H. S. Antila and E. Luijten, “Dielectric modulation of ion

transport near interfaces,” Phys. Rev. Lett. 120, 135501
(2018).

[29] V. G. Veselago, “The electrodynamics of substances with
simultaneously negative values of ε and µ,” Sov. Phys.
Usp. 10, 509–514 (1968).

[30] D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Meta-
materials and negative refractive index,” Science 305,
788–792 (2004).

[31] Y. Urzhumov, W. Chen, C. Bingham, W. Padilla, and
D. R. Smith, “Magnetic levitation of metamaterial bodies
enhanced with magnetostatic surface resonances,” Phys.
Rev. B 85, 054430 (2012).

[32] M. W. Coffey, “Magnetic levitation from negative perme-
ability materials,” Phys. Lett. A 376, 2739–2742 (2012).

[33] P. Hammond, “Electric and magnetic images,” Proc. IEE
- Part C 107, 306–313 (1960).

[34] L. Hong, A. Cacciuto, E. Luijten, and S. Granick, “Clus-
ters of charged Janus spheres,” Nano Letters 6, 2510–
2514 (2006).

[35] O. V. Dolgov, D. A. Kirzhnits, and V. V. Losyakov, “On
the admissible values of the static magnetic permeabil-
ity,” Solid State Commun. 46, 147–149 (1983).

[36] J. B. Kana Kana, G. Vignaud, A. Gibaud, and M. Maaza,
“Thermally driven sign switch of static dielectric con-
stant of vo2 thin film,” Opt. Mater. (Amst) 54, 165–169
(2016).

[37] V. U. Nazarov, “Negative static permittivity and
violation of Kramers-Kronig relations in quasi-two-
dimensional crystals,” Phys. Rev. B 92, 161402(R)

(2015).
[38] C. W. Chu, F. Chen, J. Shulman, S. Tsui, Y. Y. Xue,

W. Wen, and P. Sheng, “A negative dielectric constant
in nano-particle materials under an electric field at very
low frequencies,” Strongly Correl. Electron Mater. Phys.
Nanoeng. 5932, 59320X (2006).

[39] J. Shulman, S. Tsui, F. Chen, Y. Y. Xue, and C. W. Chu,
“Plasmalike negative capacitance in nanocolloids,” Appl.
Phys. Lett. 90, 8–11 (2007).

[40] H. Yan, C. Zhao, K. Wang, L. Deng, M. Ma, and G. Xu,
“Negative dielectric constant manifested by static elec-
tricity,” Appl. Phys. Lett. 102, 062904 (2013).

[41] R. Mach-Batlle, A. Parra, J. Prat-Camps, S. Laut,
C. Navau, and A. Sanchez, “Negative permeability in
magnetostatics and its experimental demonstration,”
Phys. Rev. B 96, 094422 (2017).

[42] Z. Wang and E. Luijten, “Structural and dynamical prop-
erties of dipolar fluids near a dielectric interface,” (2019),
in preparation.

[43] M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids (Clarendon, Oxford, 1987).

[44] A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-
directed colloidal crystallization,” Nature 385, 321–324
(1997).

[45] G. Malescio and G. Pellicane, “Stripe phases from
isotropic repulsive interactions,” Nature Mater. 2, 97–
100 (2003).

[46] R. C. O’Handley, Modern Magnetic Materials: Principles
and Applications (Wiley, New York, 1999).


