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Dark matter comprises the bulk of the matter in the universe but its particle nature and cosmolog-
ical origin remain mysterious. Knowledge of the dark matter density distribution in the Milky Way
Galaxy is crucial to both our understanding of the standard cosmological model and for ground-
ing direct and indirect searches for the particles comprising dark matter. Current measurements
of Galactic dark matter content rely on model assumptions to infer the forces acting upon stars
from the distribution of observed velocities. Here, we propose to apply the precision radial velocity
method, optimized in recent years for exoplanet astronomy, to measure the change in the velocity of
stars over time, thereby providing a direct probe of the local gravitational potential in the Galaxy.
Using numerical simulations, we develop a realistic strategy to observe the differential accelerations
of stars in our Galactic neighborhood with next-generation telescopes, at the level of 10−8 cm/s2.
Our simulations show that detecting accelerations at this level with an ensemble of 103 stars requires
the effect of stellar noise on radial velocity measurements to be reduced to <10 cm/s. The measured
stellar accelerations may then be used to extract the local dark matter density and morphological
parameters of the density profile.

INTRODUCTION

Understanding the nature of dark matter (DM) [1] is
one of the most pressing issues in modern physics. Many
particle DM models, such as those employing weakly-
interacting massive particles and axions, predict unique
laboratory and astrophysical signatures, which are being
searched for at a variety of experiments and observatories
[2]. However, knowledge of the local DM density is crucial
for interpreting the results of these efforts. Unfortunately,
current methods for determining the local properties of
DM (i.e., within our region of the Galaxy) are indirect and
subject to large systematic uncertainties [3]. In addition
to aiding searches for particle DM, better certainty of the
local DM distribution may provide key insights into the
history of the Milky Way (MW). In this work, we propose
a new approach – direct measurements of stellar acceler-
ations – to determine the local DM density and morpho-
logical parameters in the MW. Our technique circumvents
many of the systematic issues faced by existing methods.

Currently, the DM density in the MW is inferred from
either the Galactic rotation curve, measured via Doppler
shifts, or the dispersion of local stellar velocities in the
vertical direction about the Galactic mid-plane [3–7], mea-
sured using astrometry. However, implicit in both these
analyses is the assumption of equilibrium, i.e., that dy-
namics have reached steady-state. In particular, the veloc-
ity distribution does not directly probe the gravitational
potential and thus the DM distribution: only the equi-
librium velocity distribution is determined by the poten-
tial. Given the presence of density waves in the MW, for
example those causing the local North-South asymmetry
recently studied in [8] using Gaia, as well as other out-of-
equilibrium processes, such as the continuing interactions
of the Galaxy with massive satellites, the equilibrium as-

sumption used in traditional determinations of the local
DM density is open to question. Stellar accelerations, on
the other hand, are directly determined by the forces act-
ing on a star, and thus the gravitational potential, with no
modeling assumptions. Having such a direct probe would
allow, in principle, for an unbiased mapping of the grav-
itational potential of the MW. This approach opens up,
for example, the possibility of searching for low-mass DM
subhalos, which are predicted in the standard cosmological
framework but are absent in certain DM models such as
warm DM and fuzzy DM [9].

Stellar accelerations may also be used to probe both
the spatial morphology of the density profile of the bulk
DM halo and the Galactic disk, in addition to possible
DM subhalos (see [10–15] for related but more indirect
proposals). The radial density profile in particular plays a
key role in interpreting searches for DM annihilation [16],
while the halo shape is influenced by baryonic feedback
and potentially DM self-interactions [17].

In this Letter, we show how precision radial velocity
(RV) measurements of the accelerations of individual stars
in our Galactic neighborhood can be used to measure the
local DM density and constrain the spatial morphology of
the DM density distribution. To our knowledge, a similar
idea has only been suggested once before, in the context
of testing modified Newtonian gravity with MW globular
clusters [18, 19]. We highlight the work of Silverwood and
Easther [20], contemporaneous to our own, in which they
also propose using stellar accelerations to map the Galactic
gravitational field, and provide a complementary analysis.

We propose to use the precision RV method, honed in
the search for extrasolar planets [21], to measure directly
the change over time of the velocities of an ensemble of
individual stars – and thus the forces acting upon those
stars. Since the Sun is also accelerating in the gravitational
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Figure 1. Geometry for observing stellar accelerations in the
Milky Way. The solar system is at a distance r0 from the
Galactic Center (origin), has a rotational velocity v0 and feels
an acceleration a0 due to the Milky Way gravitational poten-
tial. Stars further inward feel a stronger acceleration. From
Earth, we can observe the radial velocity of stars ∆r away. By
measuring small changes in these velocities over time, we di-
rectly determine stellar accelerations and hence the Milky Way
gravitational potential. The diagram above is not to scale and
angles are exaggerated for effect.

potential of the MW, measurements must be performed
on stars sufficiently distant from the Sun – either closer or
further from the Galactic Center (GC) – for a difference in
acceleration to be observed. Given the rotational velocity
of the Sun about the GC vcirc (r0) ≡ v0 ≈ 220 km/s [22],
and our Galactocentric distance r0 ≈ 8 kpc [22], the local
centripetal acceleration is ar (r0) ≡ a0 ≈ 2 × 10−8 cm/s2.
This situation is depicted in Figure 1.

THEORETICAL FRAMEWORK

The Poisson equation directly relates stellar accelera-
tion gradients, which we propose to measure using the RV
method, to the energy density ρ: ∇·a = −4πGρ, where G
is Newton’s constant. Suppose we measure the radial ac-
celeration gradients for stars towards the GC, as pictured
in Fig. 1. Note that our proposed observing region will
be intentionally slightly misaligned from the GC (verti-
cally and horizontally) to avoid extinction in the Galactic
midplane and overcrowding of stars. To a good approxima-
tion, pointing in this manner primarily gives us a measure
of ∂ar/∂r, where ar is the component of the acceleration
in the radial direction. We assume azimuthal symmetry
and discuss errors from contamination by vertical gradi-
ents later in this section.

Radial gradients of the acceleration are primarily deter-
mined by the local DM density. Using the Poisson equa-
tion, we may relate the radial gradients of ar to the local
DM density, finding

ρDM ≈
1

4πG

(
2(A−B)2 − ∂ar

∂r

)
, (1)

where A = 15.3 ± 0.4 km s−1 kpc−1 and B = −11.9 ±

0.4 km s−1 kpc−1 are the Oort constants [23]. Note that
the combination of Oort constants in Eq. (1) is related to
the circular velocity and distance from the GC by A −
B = v0/r0. The relation in Eq. (1) would be exactly true
were it not for the contribution of the Galactic disk, which
contributes energy density locally. However, even though
the local energy density due to the disk is expected to
dominate that of the DM by approximately a factor of
10 [3], we find that completely neglecting the disk leads to
only a 30% error in measuring the DM density using (1).
At higher precision, the contribution from the disk can be
modeled, as we discuss below.

First, it is instructive to understand Eq. (1) in the
context of a spherical DM density profile. In this case,
we may write the DM contribution to the acceleration
as ar(r) = −GM(r)/r2, where M(r) is the DM mass
enclosed within the radius r. Note that the contribu-
tion to the Oort constants from the spherical potential
is 2(A − B)2 = 2GM(r)/r3, while the derivative gives
a′(r) = 2GM(r)/r3 −GM ′(r)/r2. Defining the local DM
density as ρDM and r0 as the distance from the Sun to
the GC, we then find that the right hand side of Eq. (1)
trivially reduces to ρDM since M ′(r0) = 4πr2

0ρDM.
Now let us repeat the exercise above for the disk den-

sity profile in order to calculate the contribution to Eq. (1)
from the disk, which should in principle be subtracted at
high enough precision. For a thin disk with surface den-
sity Σdisk, and assuming that we are in the plane of the
disk, the calculation proceeds as for the spherical density
profile except that M ′disk(r) = 2πrΣdisk, with Mdisk(r) be-
ing the mass enclosed within the radius r due to the disk.
We then see that the disk leads to a fictitious contribution
to ρDM, as inferred from Eq. (1) and which we refer to
as ρfict.

DM , given by ρfict.
DM = Σdisk/(2r0). The local disk sur-

face density is measured to be Σdisk ≈ 50 M�/pc2 [3, 7],
with approximately and conservatively 20% uncertainty,
and also r0 ≈ 8 kpc. Here M� is the mass of the Sun.
This implies that ρfict.

DM = (3.1± 0.6)× 10−3 M�/pc3. Cur-
rent estimates put the local DM density at ρDM ≈ 0.01
M�/pc3 [3], meaning that ρfict.

DM/ρDM ≈ 0.3.
The relative uncertainty in the DM density is magnified

compared to the relative uncertainty in ∂ar/∂r because
of the cancellation that occurs in (1). Writing δa′r as the
uncertainty in ∂ar/∂r and δρDM as the uncertainty in the
DM density, we find

δρDM

ρDM
≈ δa′r

a′r

(A−B)2

2πGρDM
≈ 2.7

δa′r
a′r

. (2)

Note that while we do not explore this possibility in
detail in this work, the local DM density may also be mea-
sured by using vertical acceleration measurements of stars
in the local neighborhood but at sufficiently high vertical
displacement from the disk z, such that the dominant verti-
cal acceleration is from DM and not the disk. Note, how-
ever, the vertical acceleration from DM is sub-dominant
compared to the radial acceleration by the factor z/r0. Ad-
ditionally, morphological parameters for the DM density
profile, such as the local slope, may be determined from
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higher precision acceleration measurements. We leave pro-
jections for how well such parameters could be determined
to future work.

OBSERVATIONAL CONSIDERATIONS

If we select stars 3 kpc away (beyond the star field
observed by the Kepler spacecraft [24] but potentially
observable with the Giant Magellan Telescope [25]), the
fractional change in acceleration compared to the local
acceleration should be approximately 0.75, i.e., ∆ar =
1.5 × 10−8 cm/s2. In more convenient units, this is
0.5 cm/s/year. Over 10 years, one would then expect a typ-
ical stellar velocity change due to the MW gravitational po-
tential of approximately 5 cm/s, which is similar to the RV
amplitude associated with an Earth-like exoplanet in the
habitable zone around a Sun-like star [26]. We note that
next-generation instruments designed for RV studies of ex-
oplanets, including ESPRESSO [27] and G-CLEF [25], are
expecting to achieve 10 cm/s or better RV precision and
long-term stability in order to pursue such exoplanet as-
tronomy.

At a target signal-to-noise ratio of 100, the faintness of
stars sets the exposure times to approximately 12 minutes
per star with a 30-m telescope at ∆r = 1 kpc or with
a future 100-m telescope at ∆r = 3 kpc. Including the
length of nights as well as star visibility leads to ∼ 104/N
observations per star per year with a single telescope for
a N -star survey where each night is time-shared between
various targets [28].

Necessary for measuring small stellar accelerations is ex-
tremely stable calibration of the spectrograph used to de-
termine the RVs over several years. The ideal tool for
this task is a laser frequency comb optimized for cal-
ibrating spectrographs. These specialized instruments,
known as “astro-combs” [29–34], may be referenced to
GPS-disciplined atomic clocks. Thus, spectrograph wave-
length solutions are easily trustworthy over a decade; and
even measurements from multiple comb-calibrated obser-
vatories can be combined into a single data set if the same
reference clock is used for the astro-combs at all observa-
tories.

An additional effect which needs to be considered is the
contribution to radial velocities from the motion of stars
in the plane of the sky, the so-called perspective accel-
eration. This effect can be removed using high-precision
astrometric surveys such as Gaia [35]. As pointed out by
Silverwood and Easther [20], this effect can be subtracted
out at the ∼ 1% level by choosing stars below a transverse
velocity threshold of ∼ 55 km/s, and such stars are quite
abundant in the Gaia catalogue.

SIMULATION SCHEME

To determine whether sufficiently sensitive stellar accel-
eration measurements are possible, given other sources of
Doppler shift “systematics” (e.g., stellar companions, plan-
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Figure 2. Example of a synthesized RV time series for a single
primary star, showing the four contributing mechanisms con-
sidered in our analysis. The effects of (a) the acceleration due
to the Milky Way gravitational potential, (b) stellar compan-
ions, (c) planets (multiple planets in this case), and (d) “noise”
including stellar activity and instrumental effects are depicted.
Red dots are the observed nights and grey dots represent all
nights.

ets, stellar noise), we simulate a measurement campaign
with synthetic RV time series from a population of stars
including all the above effects and a realistic observing
schedule. We then analyze the time series to try to re-
cover an injected acceleration signal of order few cm/s over
a decade.

An observing schedule is generated for a total measure-
ment campaign of 10 years [28]. The observing schedule is
applied to the generation of N time series (103 or larger
in this Letter), representing N candidate stars in an ini-
tial sample. Though the telescope time associated with
the observing schedule used in this work exceeds the lim-
its posed by the exposure times calculated in the previous
section for a single telescope, we use it to aid understand-
ing confounding effects in the search for the acceleration
signal. It is important to note that fewer than N stars
will actually be followed in a real campaign because many
stars will be poor targets for detecting an acceleration sig-
nal (due to reasons discussed below). The full campaign
would then consist of a target selection phase (where one
prunes the list of candidate targets) lasting a few years
followed by a ∼decade observations devoted exclusively to
measuring the acceleration signal.

Each star in the simulation is assigned a number of stel-
lar companions and planets. The multiplicity and orbital
parameters of these orbiting bodies are determined using
known statistical distributions [28]. The total RV for a
given primary star is:

vtotal (t) = vaccel (t) + vcomp (t) + vplan (t) + vnoise (t) , (3)

where vaccel (t) = ∆art according to the acceleration
change ∆ar at target distance ∆r away, due to the MW
gravitational potential. The three terms following vaccel,
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Figure 3. (a) Probability density function (PDF) of fitted stel-
lar accelerations for ∼ 7.5× 104 stars using Gaussian processes
(GP) (blue) and a simple linear fit (orange). 60 cm/s of white
noise and quasiperiodic correlated noise ranging from 50 cm/s
to 250 cm/s is added to each time series. (b) Standard error of
the mean (SEM) vs. number of stars observed. A 3σ detection
(dotted gray line) is obtained after about 2 × 104 stars for the
GP fit.

arise from stellar companions, planets, and noise [28].
Since the survey volume is relatively small [28] and ∆r =
3 kpc, we take ∆ar = 1.5×10−8 cm/s2 (∼ 5 cm/s/decade)
for all stars. Figure 2 shows a typical example of each of
the components plotted separately as time series; note the
scale of the various effects. In this particular example,
vtotal would be dominated by vcomp. The ideal case (oc-
curring about 10% of the time) is a star with no stellar
companions or planets. This leaves us with only the MW
acceleration plus noise.

RESULTS

In a series of numerical experiments, we attempt to re-
cover an injected ∼ 5 cm/s/decade acceleration signal from
a large ensemble of synthesized vtotal time series for N sim-
ulated primary stars.

First, to assess what is possible with present-day state-
of-the-art instruments and analysis techniques, we set the
Gaussian white noise standard deviation σWN to 60 cm/s
and add correlated noise with amplitudes ranging from 50
cm/s to 250 cm/s on a given star (the range of noise lev-
els observed in the Sun [36]). In order to fit the more
complicated noise model, we employ a Gaussian process
(GP) regression [28] with a quasiperiodic kernel func-
tion [37–39]. The GP regression is also able to simulta-
neously fit the Keplerian components of the time series
(i.e., those associated with planets and stellar compan-
ions). With the GP fit (N = 75,044 stars) we obtain a
mean (standard error of the mean σ given in parentheses)
of 1.42(0.24)×10−8 cm/s2. In contrast, a simple linear fit
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Figure 4. Probability density function (PDF) of fitted stellar
accelerations for 103 stars, using a simple linear fit and filtering
using periodogram power. The only source of noise included is
10 cm/s white noise. The dotted black curve is a Gaussian fit
to the histogram (a guide to the eye). The injected acceleration
signal of 1.5 × 10−8 cm/s2 is shown as a blue dotted line.

(N = 72,425 stars) to the time series yields a mean acceler-
ation of 2.00(0.58)×10−8 cm/s2. Thus the GP fit reduces
the uncertainty by more than a factor of 2 compared to
the linear fit, recovers the injected stellar acceleration sig-
nal of 1.5×10−8 cm/s2 within 1σ and is ≈ 6σ away from a
null result. The probability density functions for the fitted
accelerations are shown in Figure 3(a).

We can vary the observed number of stars N to de-
termine what is required for a statistically significant de-
tection. For our purposes, a detection at the level nσ
is defined as the mean lying nσ away from zero. Fig-
ure 3(b) shows σ as a function of N . Unfortunately,
nearly 2 × 104 stars are required for a 3σ detection (σ ≈
0.5×10−8 cm/s2). This is a prohibitively large sample size
given realistic quantities of observation time. However, we
reiterate that N represents the number of stars in an initial
sample before target selection.

Next, we study the case where vnoise contains only Gaus-
sian white noise with σWN = 10 cm/s. This is a futuristic
scenario we envision where data processing techniques de-
veloped in exoplanet astronomy have matured to the point
of being able to effectively filter out the effects of correlated
stellar noise. At present, this is an unsolved problem, but
it is being worked on very actively [21, 40, 41]. Once stellar
noise is removed, we reach the instrumental noise limit.

For this dataset of N = 103 stars, we use a linear fit
for each time series (i.e., fit only the acceleration compo-
nent), and construct a histogram of the fitted slopes. To
avoid broadening the histogram with Keplerian signals, we
employ Lomb-Scargle periodograms [26] to identify Keple-
rian signals and reject time series containing planets and
stellar companions (without a priori knowledge of their ex-
istence).

Setting a threshold on the maximum allowed peri-
odogram power close to the maximum observed from a
pure noise signal rejects significant Keplerian signals. Our
threshold allows 277 stars to be examined, including all
132 lone stars (i.e., free of orbiting bodies) in the sample.
Figure 4 shows the result of such an analysis. Using this
subset, we obtain a mean acceleration of 1.46(0.21)×10−8

cm/s2. This result is consistent with the injected stellar
acceleration signal of 1.5 × 10−8 cm/s2 and ≈ 7σ away
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from a null result. Note that an acceleration measurement
with 14% uncertainty implies, using Eq. (2), a local DM
density measurement with 38% uncertainty.

We also test the dependence of the acceleration sensi-
tivity with planet occurrence by doubling the mean num-
ber of planets per star, keeping all other parameters fixed.
This also doubles, on average, the number of long-period
(>10 year) planets, which are difficult to remove without
sufficient coverage of the orbital period. With the added
planets it takes roughly 4 times as many stars to reach the
same detection significance.

Instead of rejecting companions via periodograms, they
can be used to help fit Keplerian signals. This could en-
able reaching the same precision in the result with far less
telescope time. In the future, we plan to simulate the tar-
get selection program in more detail, keeping track of the
time overhead associated with following poor targets and
also do a study of the stellar acceleration precision versus
number of observations, as telescope time is an expensive
resource.

CONCLUSION

In this Letter, we put forth the idea of using preci-
sion RV measurements to quantify the local DM density.
More specifically, we propose to track the velocity of stars
over time to extract their accelerations, thereby directly
probing the local gravitational potential and foregoing the
equilibrium assumption used with static measurements of
stellar velocities. The exquisite RV precision and stabil-
ity achievable with astro-comb wavelength calibrators and
exoplanet spectrographs, combined with next-generation
large telescopes, should make it feasible to measure stellar
accelerations directly at the necessary level of 10−8 cm/s2.
Importantly, detecting accelerations at this level with an
ensemble of 103 stars requires the reduction of the effect
of stellar noise on RV measurements to <10 cm/s. In the
future, measurements over a wide range of pointing direc-
tions could allow construction of a map of the gravitational
potential of the Galaxy.

We conclude by emphasizing two key points. First,
though the technical challenges are daunting for a large
observing campaign to map stellar accelerations and con-
strain dark matter models, we believe such a program will
become feasible in the next decade. Second, the dataset
that would result from this effort, providing precision RVs
from ∼ 103 stars, would be rich and valuable for other
areas of astrophysics: e.g., many long-period exoplanets
and stellar companions would likely be detected and
characterized in the process. It is our hope that the
exciting prospects for exoplanet and stellar astronomy
as well as dark matter physics will encourage others to
consider the stellar acceleration idea and pursue it further.
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