
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Emergent Prethermalization Signatures in Out-of-Time
Ordered Correlations

Ken Xuan Wei, Pai Peng (彭湃), Oles Shtanko, Iman Marvian, Seth Lloyd, Chandrasekhar
Ramanathan, and Paola Cappellaro

Phys. Rev. Lett. 123, 090605 — Published 30 August 2019
DOI: 10.1103/PhysRevLett.123.090605

http://dx.doi.org/10.1103/PhysRevLett.123.090605


Emergent prethermalization signatures in out-of-time ordered correlations

Ken Xuan Wei,1, ∗ Pai Peng (mC),2, ∗ Oles Shtanko,1 Iman Marvian,3

Seth Lloyd,4 Chandrasekhar Ramanathan,5 and Paola Cappellaro6, †

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge, MA 02139
3Departments of Physics & Electrical and Computer Engineering, Duke University, Durham, NC 27708
4Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

5Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
6Department of Nuclear Science and Engineering,

Massachusetts Institute of Technology, Cambridge, MA 02139

How a many-body quantum system thermalizes –or fails to do so– under its own interaction is
a fundamental yet elusive concept. Here we demonstrate nuclear magnetic resonance observation
of the emergence of prethermalization by measuring out-of-time ordered correlations. We exploit
Hamiltonian engineering techniques to tune the strength of spin-spin interactions and of a transverse
magnetic field in a spin chain system, as well as to invert the Hamiltonian sign to reveal out-
of-time ordered correlations. At large fields, we observe an emergent conserved quantity due to
prethermalization, which can be revealed by an early saturation of correlations. Our experiment
not only demonstrates a new protocol to measure out-of-time ordered correlations, but also provides
new insights in the study of quantum thermodynamics.

The dynamics of many-body quantum systems can
display a multitude of interesting phenomena, ranging
from thermalization [1, 2] to many-body localization
(MBL) [3–10], discrete time crystals [11–19], and dynam-
ical phase transitions [20–25]. Recently, there has been
increased interests in systems exhibiting nonergodic dy-
namics in the absence of any disorder or incommensurate
fields, such as quasi-MBL in translationally invariant sys-
tems [26] and disorder free localization [27–29]. Another
intriguing possibility is prethermalization, where nonin-
tegrable quantum systems may fail to thermalize on prac-
tically accessible timescales [30–35], due to an emergent
quasi-local integral of motion.

Here we study thermalization and prethermalization
by measuring out-of-time-ordered (OTO) commutators,
which have been used to study many quantum thermal-
ization phenomena, such as scrambling [36–41], many-
body localization [42–45] and integrability [40]. OTO
commutators are powerful indicators of information
scrambling, but are typically difficult to observe experi-
mentally.

We exploit Hamiltonian engineering techniques to in-
vestigate the onset of prethermalization in a nuclear spin
system in a natural crystal. We can access different
regimes by manipulating the relative strengths of the
dipolar interactions among spins and the transverse mag-
netic field. After a quench, we experimentally measure
OTO commutators using multiple quantum coherence
(MQC) experiments [9, 46, 47] for a system initially at
an effective infinite temperature. In the low field regime,
the commutator keeps increasing, indicating the system
thermalizes in the observed timescale. In the high field
regime, a long-lived prethermal regime arises due to an
emergent conserved quantity and the OTO commutator

involving such prethermal conserved quantity saturates
after a short time. We further support the interpretation
of our experimental results by constructing the prether-
mal Hamiltonian perturbatively [34, 48]. We numerically
observe the divergence of the perturbation series below
a certain transverse field threshold, indicating the break-
down of prethermal dynamics and the onset of the ther-
mal regime.

We work with nuclear spins in fluorapatite (FAp) [49],
an experimental system recently used to show MBL [9].
The 19F spins-1/2 form linear chains in the crys-
tal and are coupled by the magnetic dipolar interac-
tion. A single crystal is placed in a large (7 T) mag-
netic field at room temperature. In a strong mag-
netic field the interaction Hamiltonian for the 19F spins
is given by the secular dipolar Hamiltonian HDipz =∑

j,k>j Jjk
[
Sj
zS

k
z − 1

2 (S
j
xS

k
x + Sj

yS
k
y )
]
, where Jjk = J |j−

k|−3. Here Sj
α (α = x, y, z) are spin-1/2 operators of the

j-th 19F spin (see Section I in SM). In the timescales we
explore, the system can be approximately treated as an
ensemble of identical spin chains [50–52], since the inter-
chain coupling is ∼ 40 times weaker than the intrachain
coupling. The signal is averaged over a macroscopic num-
ber of chains in the crystal, with an average chain length
L larger than 50, much longer than the extent of corre-
lation in the experiments. The coupling to 31P spins in
the lattice is refocused by the applied control, and the
spin-lattice relaxation effects are negligible (T1 ≈ 0.8 s).
The dynamics of the 19F spins are thus well approxi-
mated by a 1D closed quantum system with dipolar cou-
plings. While the corresponding 1D, nearest-neighbor
XXZ Hamiltonian is integrable [53–55], the Hamiltonian
we consider can lead to diffusive [56, 57] and chaotic be-
havior [58] in 3D. In the presence of a transverse field, the
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FIG. 1. (a) Distinct behavior for transverse (Y ) and longitudinal (Z) magnetization: 〈Y (t)Y 〉β=0 at g/J = 0.25 shows a fast
decay as a function of time, indicating erasure of initial memory. 〈Z(t)Z〉β=0 at g/J = 1 shows instead slow nonergodic dynamics
with periodic oscillations. In the opposite regimes (dashed lines) both correlations quickly decay to zero. Experimentally
measured OTO commutator, CYZ, as a function of transverse field strength (b) and normalized time (c). We observe the
fastest growth around g/J = 0.5 (marked by a dashed line in (b)). Here and in the rest of the paper, error bars are determined
from the noise in the free induction decay (see Supplementary Information for details on the experimental scheme).

system is known to show a quantum phase transition [59].

In experiments we consider the dynamics under an en-
gineered Floquet Hamiltonian, obtained by modulating
HDipz with periodic sequences of strong rf pulse [60] that
can also introduce quenches and time reversal. To low-
est order of Magnus expansion the pulse sequence (see
Section II in SM) engineers a dipolar Hamiltonian along
the y direction, Hdipy [9], while an effective static trans-
verse field is introduced by phase shifting all the pulses.
The resulting Floquet-Trotter Hamiltonian is equivalent
to its lowest order to a transverse field dipolar Hamilto-
nian HTDip=uHDipy+gZ [61]:

HTDip=u
∑

j,k>j

Jjk

[
Sj
yS

k
y−

1

2
(Sj

xS
k
x+Sj

zS
k
z )

]
+g

∑

j

Sj
z

(1)

where both u and g are under experimental control (for
details see Section II in SM) and we set J = −uJj,j+1

being the engineered nearest-neighbor coupling strength.
In all experiments we set u = 0.2 and pulse sequence
period tc = 96 µs, which corresponds to an effective
Jtc = 0.62, given the natural Jj,j+1 = −33 krad/s neigh-
bor coupling strength in fluorapatite. For either g=0 or
J=0 the magnetizations Y =

∑
j S

j
y and Z =

∑
j S

j
z are

exactly conserved, respectively. Although prethermal-
ization is expected when moving away both limits, their
dynamics differ both fundamentally and practically. At
low field g/J ≪ 1, heating rate from prethermal state
to thermal state is quadratic ∝ (g/J)2, which can be
explained by time-independent perturbation theory [62],
while the prethermalization at large field g/J ≫ 1 fea-
tures exponentially small heating rate ∝ exp(−O(g/J)),
which is of the same origin as Floquet prethermaliza-
tion [34, 63]. The difference is observed in the experi-
mental two point correlators 〈Z(t)Z〉β=0 and 〈Y (t)Y 〉β=0

shown in Fig. 1(a). In this letter, we focus on the expo-
nentially slow heating at large field regime. As shown

in Ref. [64], a prethermal regime exists for Hamiltoni-
ans that can be divided into two parts H = H0 + ǫV ,
with H0 having integer eigenvalues up to a scaling fac-
tor C, ei2πCH0 = 1. For sufficiently small ǫ, H can
be approximately transformed to a prethermal Hamil-
tonian Hpre, through a local unitary R [34, 63], i.e.
RHR† = Hpre + δH , where δH is exponentially small
in ǫ, R = 1 + O(ǫ), and [H ′

0, Hpre] = 0, where H ′
0 in the

frame rotated by R has the same matrix representation
as H0 in the original frame, so they are different physical
operators. As the prethermal Hamiltonian conserves H ′

0,
R†H ′

0R is a conserved quantity in the original frame up
to an exponentially long time tpre, after which the small
correction δH thermalizes the system. In the transverse
field dipolar model with g ≫ J , we can identify the dom-
inant part with the field and the perturbation with the
dipolar interaction. The prethermal Hamiltonian is then
Hpre = gZ ′−uH ′

Dipz/2+O(J2/g). Then, in the prether-
mal regime we expect an emergent conserved quantity,
Zpre, related to Z ′ by a local unitary transformation R,
Zpre = R†Z ′R.

To investigate the presence of this emergent constant
of motion beyond the partial information given by lo-
cal observables [Fig. 1(a)] we experimentally analyze
the properties of OTO commutators [Fig. 1(b-c)], de-
fined as CAB(t) ≡ 〈[A(t), B][A(t), B]†〉β , where A(t) =

U(t)AU(t)†, with U(t) = e−iĤt and Ĥ being the sys-

tem Hamiltonian. Here 〈·〉β = Tr(e−βĤ · )/Tr(e−βĤ)
denotes the ensemble average at the inverse tempera-
ture β. The OTO commutator contains a term with
an unconventional temporal order, the OTO correlator
F (t) ≡ 〈A†(t)B†A(t)B〉β , which can provide a more
accurate description of operator scrambling than, e.g.,
Loschmidt echoes [65–72]. We exploit our ability to engi-
neer a time reversal of the Hamiltonian in Eq. (1) to mea-
sure the OTO commutator of extensive observables [73],
as we explain in the following.

In room temperature NMR experiments, the initial
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state for a chain of L spins is described by the den-
sity matrix ρ(0) ≈ (1− ǫZ)/2L, with ǫ ∼ 10−5. Since
the identity operator does not contribute to any mea-
surable signal, we only care about the deviation from
it, δρ = 2Z/

√
L, which has been normalized such that

Tr(δρ2)/2L = 1. The mixed initial state enables the ex-
perimental study of two-point correlators and OTO com-
mutators in a straightforward way. Since δρ(0) is usually
the collective spin magnetization pointing in some direc-
tion, On =

∑
j n · Sj and we can measure the collective

magnetization around any axis, the typical signal is the
two-point correlation, 4Tr[U(t)δρ(0)U †(t)On]/(2

LL) ≡
〈On(t)On〉β=0. That is, in our experiments, the (devi-
ation of) the density matrix plays the role of an observ-
able for an effective simulated system at infinite temper-
ature. Crucially, however, the “simulated observable”
δρ will thermalize at long times under the strong driv-
ing, 〈δρ(t)〉 = 0: this enables distinguishing the prether-
mal regimes from the expected (zero) signal at long
times due to the eventual thermalization. MQC experi-
ments [46, 74, 75] measure the overlap of the time-evolved
density matrix, δρ(t) = U(t)δρ(0)U †(t), with itself after
a collective rotation. The overall measured signal can be
expressed as

Sφ = 2−LTr[e−iφOnδρ(t)eiφOnδρ(t)]. (2)

Taking a discrete Fourier transform of Sφ with respect
to φ yields the MQC intensities: Sφ =

∑
q e

−iqφIq.
Expanding Sφ in powers of φ, it can be shown that
Tr([δρ(t),On]

2)/2L = −∑
q q

2Iq. Setting δρ(0) = On
′ ,

we can write

CO
n
′On

(t) =
4

L
〈|[On

′(t),On]|2〉β=0 =
∑

q

q2Iq(t) (3)

Eq. (3) is the central idea of our experiments: by measur-
ing the second moment of the MQC intensities encoded
in δρ(t) along On one can obtain the OTO commutator
between On

′(t) and On as if the system were at infinite
temperature [76]. Eq. (3) was first derived in a different
context in Ref. [77] for NMR systems. When applied to
pure states, it relates the second moment of the MQC
distribution to the quantum Fisher information [47].
To study the system dynamics after a quench to Hamil-

tonian (1), we experimentally measure the OTO com-
mutator CYZ ≡ 4L−1〈|[Y (t), Z]|2〉β=0 for various trans-
verse field strengths and times [see Fig. 1(b-c)]. First
note that in the limit g → ∞, Z is a conserved quan-
tity thus making CYZ constant. In Fig. 1(c) we observe
that for large but finite transverse field CYZ stops grow-
ing at an early time, revealing that Z is approaching
the emergent conserved quantity Zpre - as also indicated
by the slow decay and persistent oscillation of the two
point correlator 〈Z(t)Z〉β=0 [Fig. 1(a)]. For small trans-
verse field, instead, CYZ keeps increasing, suggesting a
faster heating rate [Fig. 1(c)]. We note that in the limit
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FIG. 2. (a) Experimentally averaged CYY (dashed) and CZZ

(solid) as a function of transverse field strength. (b) Ex-

perimentally measured Tr(Z̃2) (dashed) and 〈|[Z̃, Z(0)]|2〉β=0

(solid) versus transverse field strength. The time average is
taken over the values Jt = 3.77, 5.02, 6.28, 7.54, 8.80, 10.05,
with the longest time corresponding to 16 cycles (1.54ms).

of exactly no transverse field, Y is a conserved quantity
thus making CYZ constant. However, as long as a small
field is introduced the heating rate increases quadrati-
cally ∝ (J/g)2 [62] until the field strength induces a tran-
sition to the exponential prethermal regime: we thus ob-
serve a maximum of CYZ at around g/J ≈ 0.5 [Fig. 1(b)].
This maximum is due to a competition between the two
terms in the Hamiltonian, similar to the competition be-
tween two phases at a quantum critical point. Indeed, the
ground state shows a quantum phase transition, which
is however at g/J ≈ 0.9 [59]. Thus, although OTOCs
have been proposed to study quantum criticality at low
enough temperature [78], here the link between informa-
tion scrambling and the quantum critical point is unclear.
The dynamics for an initial effective infinite temperature
state is further indicated by the decay of 〈Y (t)Y 〉β=0 in
Fig. 1(a) and additional OTO commutators presented
below. Control imperfection (such as pulse errors and
rf transients) and decoherence due to the open system
dynamics preferentially affect the higher quantum coher-
ences of large spin correlations. In addition, for longer
time the inter-chain coupling becomes non-negligible so
the system is no longer one dimensional [79].

To gain further insight into the differences between the
quadratic and exponential heating regimes, we experi-
mentally measure CZZ and CYY, as shown in Fig. 2(a).
Because these OTO commutators fluctuate significantly
in time, we average them at six different times. As
g increases, Z(t) approaches the prethermal conserved
quantity Zpre, which itself gets close to Z, and CZZ gets
smaller. This behavior is only observed for OTO commu-
tators involving at least one operator that overlaps with
the emergent conserved quantity, while other commuta-
tors, such as CYY, keep growing as if the system were
thermal, regardless of the transverse field strength (with
the exception of exactly zero field, g = 0).

While we cannot directly measure Zpre, the time-

averaged operator Z = t−1
pre

∫ tpre

0
Z(t)dt (where tpre is the
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timescale over which the prethermal conserved quantity
is present) captures its essential features [80]. Indeed, we
can generally write Z(t) = Zpre + U(t)(Z − Zpre)U(t)†:
then, in the prethermal regime, the second term is small
and fluctuates, yielding Z ≈ Zpre after time average.
We can approximate Z with a discrete time average,
Z̃ =

∑N

n=1 Z(tn)/N , by independently varying the for-
ward and backward evolution times in the MQC pro-
tocol (see SM for details on the experiments and for a

comparison between Z and Z̃). Figure 2(b) shows that

Tr(Z̃2)/Tr(Z(0)
2
) → 1 as g increases, because the time-

varying part of Z(t) is very small for large g. Further-

more, 4/L〈|[Z̃, Z(0)]|2〉β=0 approaches zero at large g,

suggesting that limg→∞ Z̃ = Z.
To support our interpretation of the experimental re-

sults, we numerically construct the prethermal Hamilto-
nian in large field limit, showing that indeed Zpre ≈ Z is
an emergent constant of motion. The prethermal Hamil-
tonian can be expanded in powers of ǫ = J/g

Hpre = Z ′ +

nM∑

n=1

ǫnh(n), (4)

and numerically evaluated up to order nM (see Section
IV in SM). It has been shown [34] that for generic many-
body systems the series in Eq. (4) might not converge
as nM → ∞, but there exists an optimal order n∗ when
truncating the series, so that Hpre is most similar to H .
If the system Hamiltonian does indeed support prether-
malization, we expect its eigenvalues Em to be close to
the prethermal Hamiltonian ones, Epre

m . We thus calcu-
late the eigenvalue difference r ≡ meanm(Em − Epre

m )/L
(where m labels the eigenvalues in ascending order), ex-
pecting r to converge to zero only in the prethermal
regime. Figure 3(a) shows r as a function of maximum
truncation order nM for different values of ǫ. For large
g, r ≈ 0 appears to converge up to the largest numeri-
cally accessible order, suggesting that Hpre is similar to
H and there exists an approximately conserved quantity
Zpre. For small g however, r diverges, indicating that
a prethermal Hamiltonian that conserves Z ′ cannot be
found. The transition happens at around g/J = 0.5.
To further demonstrate that a conserved quantity

emerges for large g, we simulate Z at large times
(Jt = 103) and decompose it according to the Hamming
weight [9]

Z(Jt = 103) =
√
2L−2L

L∑

k=1

ζk∑

s=1

bsk(Jt)Bs
k, (5)

where Bs
k are operators composed of tensor products

of k Pauli matrices and L − k identity operators, and
ζk ∝ 3k ×

(
L
k

)
labels the number of configurations with

k non-identity Pauli operators. We define the Hamming
weight of k-spin correlations as fk =

∑ζk
s=1[b

s
k]

2, satis-

fying
∑L

k=1 fk = 1. Figure 3(b) shows that for small

transverse field fk is approximately proportional to ζk,
suggesting that all possible operators Bs

k have the same
weight at very late time Jt = 103, in agreement with the
eigenvalue thermalization hypothesis [81–84]. The result
is qualitatively different for g ≫ 1, where a significant
one-body term, f1, exists even at Jt = 103, signifying
the failure of thermalization and the emergence of the
conserved quantity Zpre. We thus study f1 as a func-
tion of time. For small fields, g/J ≤ 0.5, the contri-
bution of f1 in Z(t) relaxes from one to zero, as shown
in Fig. 3(c). For large g/J , instead, f1 reaches a non-
zero, quasi-equilibrium value, signaling the prethermal
regime. We do not see the final thermalizing stage in
the numerics, possibly because small systems, L = 13,
do not fully thermalize [85]. On the other hand, while
Y is conserved at exactly zero field (g = 0), as soon as
a small transverse field is introduced the contribution of
f1 to Y (t) decays to zero [Fig. 3(d)]. This indicates that
the slow dynamics observed for Y (t) at small g is not
protected by the prethermal conserved quantity in the
same way as Z(t) at large g, and will thus thermalize
on timescales much shorter than the exponentially long
tpre. The quantitative difference between f1 for Y (t) and
Z(t) can be approximately observed by measuring the
two-point correlations 〈Z(t)Z〉β=0 and 〈Y (t)Y 〉β=0. As
shown in Fig. 1(a), in the small field regime 〈Y (t)Y 〉 de-
creases rapidly as a function of time, suggesting that f1(t)
of Y (t) is not a (prethermal) conserved quantity that per-
sists to exponentially long time [86]. In stark contrast,
〈Z(t)Z〉 shows a slow decay with periodic oscillations,
suggesting that f1(t) of Z(t) is mostly conserved, consis-
tent with prethermalization at large g/J [87].

In conclusion, we studied the out-of-equilibrium dy-
namics of the transverse field dipolar interaction in a
solid-state NMR quantum simulator. Using MQC tech-
niques, we measured OTO commutators to reveal a dis-
tinct dynamics in the high and low field regimes, and
identified the former as prethermal regimes which does
not thermalize on practically accessible timescales. In
the prethermal regime, when one of the OTO operators is
close to the emergent quasi-conserved quantity, the OTO
commutator saturates at an early time, while it keeps
increasing in the opposite regime, with a transition at
about g/J = 0.5. We further validate our experimen-
tal results numerically, by constructing the prethermal
Hamiltonian and verifying the emergence of a conserved
quantity at high field. We demonstrate the value of OTO
commutators in investigating non-equilibrium quantum
thermodynamics, while also providing a method to ex-
perimentally measure OTO commutators that could be
extended to other experimental platforms. Similar tech-
niques could be used for example to explore other many-
body phenomena, such as localization, dynamics phase
transition and information scrambling, paving the way to
more comprehensive understanding of out-of-equilibrium
quantum many-body systems.
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FIG. 3. Numerical characterization of the prethermal Hamiltonian (a) Eigenvalue difference r with respect to maximum
order nM for different values of g/J . r shows a divergence, up to a maximum field value g/J = 0.5. (b) Decomposition of
Z(t) (obtained by exact diagonalization) at Jt = 103 according to the operator Hamming weight: fk is the contribution of
all possible spin correlations with Hamming weight k. For small fields, g/J = 0.05 (dashed line), the result follows closely
the distribution (triangles) obtained randomly sampling all possible operators. For large fields, g/J = 5 (solid line) there is a
significant contribution of single-body terms, related to the quasi-conserved quantity Zpre. In the inset: f1 as a function of g.
f1 for Z(t) (c) and Y (t) (d) as a function of normalized time, showing the nonthermal behavior of Z at large g/J , while Y is
always thermal even for small g/J . The system size is L = 12 for (a) and 13 for (b–d).
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