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Counterdiabatic (CD) driving presents a way of generating adiabatic dynamics at arbitrary pace,
where excitations due to non-adiabaticity are exactly compensated by adding an auxiliary driving
term to the Hamiltonian. While this CD term is theoretically known and given by the adiabatic
gauge potential, obtaining and implementing this potential in many-body systems is a formidable
task, requiring knowledge of the spectral properties of the instantaneous Hamiltonians and control
of highly nonlocal multibody interactions. We show how an approximate gauge potential can be
systematically built up as a series of nested commutators, remaining well-defined in the thermody-
namic limit. Furthermore, the resulting CD driving protocols can be realized up to arbitrary order
without leaving the available control space using tools from periodically-driven (Floquet) systems.
This is illustrated on few- and many-body quantum systems, where the resulting Floquet protocols
significantly suppress dissipation and provide a drastic increase in fidelity.

Introduction. – Adiabaticity presents one of the fun-
damental tools in physics, ranging from heat engines in
thermodynamics to quantum state preparation and com-
putation [1–4]. However, true adiabatic control can only
be obtained using slow driving and asymptotically long
timescales. While faster driving leads to diabatic excita-
tions and resulting dissipative losses, the inevitable pres-
ence of decoherence and noise in realistic quantum sys-
tems limits the available timescales, preventing true adi-
abaticity. Various methods have been proposed in order
to achieve so-called “Shortcuts to Adiabaticity” (STAs)
both theoretically [5–8] and experimentally [9–18], mim-
icking adiabatic dynamics without requiring slow driving.

One way of circumventing this loss of fidelity at finite
driving rates is through counterdiabatic (CD) or transi-
tionless driving – a velocity-dependent term is added to
the control Hamiltonian, exactly compensating the di-
abatic contributions to the Hamiltonian in the moving
frame [19–22]. This term is known as the adiabatic gauge
potential (or gauge connection), encoding the geometry
of eigenstates [22]. However, while this potential may be
exactly obtained in few-body systems, its construction
in general requires diagonalization of the Hamiltonian in
the full Hilbert space, prohibiting its use in general many-
body systems. Furthermore, the resulting operator tends
to involve highly nontrivial and nonlocal couplings not
present in the control Hamiltonian, preventing its actual
implementation [23–25]. While various applications of
STA in many-body systems have been investigated, these
generally impose restrictions on the studied system (for
a recent review, see [26]) – either dynamic symmetries or
scaling laws [27, 28], Born-Oppenheimer dynamics [29],
underlying Lax pairs [30],... Various efforts have also
been made to use STA to counteract the Kibble-Zurek
mechanism in critical systems [31, 32].

Restricting driving to available (local) couplings led to
the development of fast-forward (FF) protocols [33–36],
which only follow the adiabatic path at the beginning

and end of the driving. However, there exists no gen-
eral way of constructing these for complex systems. One
specific class of FF protocols is those where CD driving
is realized through Floquet-engineering: high-frequency
oscillations are added to the control so that the resulting
Floquet Hamiltonian mimics the CD Hamiltonian. This
has already been used for high-fidelity quantum state ma-
nipulation both theoretically, in closed [37–39] and open
systems [40], and experimentally [41, 42].

We propose a method of (i) finding an efficient and con-
trolled approximation to the gauge potential, remaining
well-defined in many-body systems, which can then (ii)
be systematically realized through Floquet-engineering
by resonantly oscillating the instantaneous Hamiltonian
with the driving term. Effectively, we propose a general
strategy for designing fast adiabatic protocols, applicable
both in small quantum systems to achieve high fidelity
for state preparation and in large systems, quantum or
classical, to suppress dissipative losses.
Methods. – Consider a control Hamiltonian H(λ) de-

pendent on a control parameter λ. Our goal is to trans-
port a stationary state or distribution, at an initial value
of the control parameter λi, to one corresponding to a
final value λf . In the standard approach, this is done
by adiabatically changing λ(t) from λi to λf , which is
often impractical because of the necessary access to long
timescales. The key idea of CD driving is to vary the
parameter λ(t) at a finite rate while simultaneously com-
pensating the diabatic excitations by explicitly adding an
auxiliary term as

HCD(t) = H(λ) + λ̇Aλ. (1)

Adiabatic control at arbitrary driving rates for arbitrary
initial states is realized provided the adiabatic gauge po-
tential Aλ [22] satisfies

〈m|Aλ|n〉 = i 〈m|∂λn〉 = −i 〈m|∂λH|n〉
εm − εn

, (2)
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where |n〉 and εn are the eigenstates and the energy
spectrum of the instantaneous Hamiltonian, H(λ) |n〉 =
εn |n〉.

Eq. (2) highlights the issues with many-body CD driv-
ing: the gauge potential is defined in the eigenbasis of the
instantaneous Hamiltonian, requiring exact diagonaliza-
tion. Furthermore, for increasing system sizes the denom-
inator (εm− εn) can become exponentially small, leading
to divergent matrix elements and an ill-defined gauge po-
tential in the thermodynamic limit [22, 43]. Physically,
at least in chaotic systems, the exact gauge potential also
cannot be local [44].

We propose an approximate gauge potential defined as

A(`)
λ = i

∑̀
k=1

αk [H, [H, . . . [H︸ ︷︷ ︸
2k−1

, ∂λH]]], (3)

determined by a set of coefficients {α1, α2, . . . , α`}, where
` determines the order of the expansion. The exact gauge
potential can be represented in this form in the limit
` → ∞ [45]. Instead we consider a finite value of ` and
treat the expansion coefficients as variational parameters,
which can be obtained by minimizing the action S`

S` = Tr
[
G2
`

]
, G` = ∂λH− i[H,A(`)

λ ]. (4)

The exact gauge potential is known to follow from the
variational minimization of an action [46]. However, it
is not a priori clear what (local) operators should be
included in the variational basis. The total number of
possible operators increases exponentially with their sup-
port, limiting brute-force minimization to highly local
operators with restricted support. Furthermore, it is far
from guaranteed that such operators will be experimen-
tally realizable. The proposed ansatz tackles both prob-
lems simultaneously. (i) The number of variational coeffi-
cients can be kept small while still returning an accurate
approximation to the exact gauge potential. As such,
Eq. (3) can be seen as a variational ansatz including only
the most important contributions with the maximum
range of operators set by `. (ii) In addition, this gauge po-
tential can be engineered with a Floquet protocol. This
is possible because the high-frequency expansion of the
Floquet Hamiltonian shares the commutator structure of
Eq. (3). This expansion exhibits the symmetries of the
exact solution, and as additional bonus we remark that
this ansatz has a well-defined classical limit, where even
the local-operator basis becomes infinite-dimensional. In
classical systems, the commutators in Eq. (3) only need
to be replaced by Poisson brackets.

Since the action is the Hilbert-Schmidt norm of G`,
this method has the clear advantage that the action can
be calculated without explicitly constructing the opera-
tor matrix in the full Hilbert space. There are various
ways of motivating Eq. (3) (see Supplementary Material

[45]): it can be seen as an expansion in the Krylov sub-
space generated by the action of G`, or by noting that
such commutators appear through the Baker-Campbell-
Hausdorff expansion in the definition of a (properly reg-
ularized) gauge potential, or by noting that its matrix
elements share the structure of those of the exact gauge
potential. Namely, evaluating Eq. (3) in the eigenbasis
of H returns

〈m|A(`)
λ |n〉 = i

∑̀
k=1

αk 〈m| [H, [H, . . . [H︸ ︷︷ ︸
2k−1

, ∂λH]]]|n〉

= i

[∑̀
k=1

αk(εm − εn)2k−1

]
〈m|∂λH|n〉 . (5)

This can be compared to the exact expression (2), con-
taining a state-dependent factor 〈m|∂λH|n〉 and a pref-
actor only dependent on the excitation frequency ωmn =
(εm − εn). The variational optimization can be seen as
approximating the exact prefactor 1/ωmn by a power-

series prefactor a
(`)
λ (ωmn) ≡

∑`
k=1 αkω

2k−1
mn for the range

of relevant excitation frequencies set by 〈m|∂λH|n〉.
While such an approximation is generally impossible

due to the divergence of 1/ωmn near ωmn = 0 and the
divergence of the power series for ωmn → ∞, the ap-
proximation does not need to hold in these limits. First,
for large ωmn the matrix elements of local operators
〈m|∂λH|n〉 typically decay exponentially with ωmn [44],
leading to a negligible contribution to the gauge poten-
tial. Second, there are physical motivations for allowing
transitions for small ωmn. When speeding up adiabatic
driving in the presence of an energy gap ∆, only tran-
sitions with ωmn ≥ ∆ need to be suppressed to achieve
unit fidelity, and in more general gapless regimes corre-
sponding to e.g. excited states the resulting excitations
will be confined to a narrow energy shell, the width of
which decreases with the order ` of the expansion.
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FIG. 1: Variationally-obtained power-series prefactor

a
(`)
λ (ωmn) for Eq. (6). Dotted line corresponds to exact

prefactor 1/ωmn. Parameters L = 14, J = 1,
hx = hz = 0.3, λ = 1.

We illustrate how this expansion works in Fig. 1, for a
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non-integrable Ising chain with

H = J

L∑
i=1

σzi σ
z
i+1 + λ

(
hz

L∑
i=1

σzi + hx

L∑
i=1

σxi

)
, (6)

where no exact gauge potential can be obtained in the
thermodynamic limit. It is clear that the variational
optimization returns a gauge potential optimized for a
relevant window of excitation frequencies, where the ap-
proximation necessarily improves with increasing `.

The resulting gauge potential can be used to reliably

speed up adiabatic protocols taking H(`)
CD(t) = H(λ) +

λ̇A(`)
λ (λ). While this presents a guaranteed improvement

in fidelity, it also requires access to interaction terms not
necessarily available, where the only interactions that are
generally present are those ofH(λ) and ∂λH(λ). Remark-
ably, this CD Hamiltonian can be realized as an effective
Floquet Hamiltonian by oscillating these two terms at
high frequency. Consider

HFE(t) =

[
1 +

ω

ω0
cos(ωt)

]
H(λ)

+ λ̇

[ ∞∑
k=1

βk sin ((2k − 1)ωt)

]
∂λH(λ), (7)

with βk the Fourier coefficients of the additional drive
and ω0 a reference frequency typically set by the excita-
tion energy of the system, with both to be determined
later. Floquet theory allows for the definition of a time-
independent Floquet Hamiltonian reproducing time evo-
lution over a single driving cycle (with T = 2π/ω)

exp (−iHFT ) ≡ T exp

(
−i
∫ t+T

t

HFE(t′) dt′

)
. (8)

The limit where the driving term scales with the fre-
quency is known to give rise to non-trivial Floquet Hamil-
tonians HF in various scenarios [47–51].

More specifically, the proposed series expansion for
the adiabatic gauge potential can be implemented in the
infinite-frequency limit ω → ∞, realizing (stroboscopic)
CD driving. This Floquet Hamiltonian follows from the
Magnus expansion, presenting a series expansion ofHF in
powers of the inverse-frequency. Essentially, the ω →∞
limit combined with the scaling of H with ω guarantees
that only commutators of the form [H, . . . , [H, ∂λH]]] sur-
vive in the Magnus expansion, which can then be found
as HF = H(λ) + λ̇AF [45], with

〈m|AF |n〉 = i

∞∑
k=1

βkJ2k−1
(
ωmn
ω0

)
〈m|∂λH|n〉 , (9)

where Jk are Bessel functions of the first kind. Again,
this reproduces the correct structure of the gauge
potential, where the frequency-dependent prefactor is

now expressed in terms of Jk. For small ωmn/ω0,
Jk(ωmn/ω0) ∝ ωkmn, which can be used to stroboscop-
ically engineer the CD term by choosing the Fourier har-
monics such that the Floquet prefactor reproduces the
power series (5) in the relevant range of excitation fre-
quencies. In first approximation, this can be done by
restricting time-evolution to ` harmonics and setting

∑̀
k=1

βkJ2k−1
(
ωmn
ω0

)
=
∑̀
k=1

αkω
2k−1
mn +O(ω−20 ). (10)

Analytic expressions can easily be obtained for matching
the harmonics to the coefficients in the gauge potential up
to arbitrary order and, if necessary, higher-order harmon-
ics can be added to compensate the O(ω−20 ) corrections
order by order [45]. As an illustration, taking β1 = 2α1ω0

and β2 = 2ω0(24α2ω
2
0 + 3α1) for the expansion with two

terms, the resulting protocol approximately reproduces
the CD evolution at stroboscopic times t = n · T, n ∈ N.
In finite systems, the exact gauge potential can always
be obtained from a large enough ansatz, which can be
reproduced as a Floquet Hamiltonian from a similarly
large number of harmonics, such that exact counterdia-
batic driving can always be realized through Floquet-
engineering. However, while this protocol does not intro-
duce new interactions in the Hamiltonian, the additional
cost is that it requires high-frequency oscillations of both
H and ∂λH rather than just ∂λH.
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FIG. 2: Fidelity in the 2-qubit system (11) for UA, CD
and FE protocol. Increasing ω further suppresses the

Floquet oscillations. Parameters J = −1, hz = 5,
τ = 0.1, ω0 = 10 · 2π and ω = 250 · ω0.

Applications. – This procedure can now be applied
on various systems with increasing complexity. In all
examples, we consider a specific driving protocol λ(t) =
sin2

(
π
2 sin2

(
πt
2τ

))
, ramping from λ(0) = 0 to λ(τ) = 1 in

such a way that λ̇ and λ̈ vanish at the beginning and end
of the protocol. λ behaves as an annealing parameter,
and as first measure for the effectiveness of the protocol
we initialize the system in the ground state for λ = 0 and
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calculate the fidelity of the time-evolved state w.r.t. the
instantaneous ground state F 2(t) = | 〈ψ(t)|ψ0(λ(t))〉 |2.

First consider a two-qubit system, for which all calcu-
lations can be performed analytically [45],

H(λ) = J (σx1σ
x
2 + σz1σ

z
2) + hz(λ− 1) (σz1 + σz2) . (11)

The first-order expansion leads to

A(1)
λ = −Jhz

2

(σy1σ
x
2 + σx1σ

y
2 )

J2 + 4(λ− 1)2h2z
. (12)

Remarkably, this already returns the exact adiabatic
gauge potential as presented in Ref. [38]. This can be
understood either by noting that [H, [H, [H, ∂λH]] ∝
[H, ∂λH], such that the higher-order commutators do not

introduce new operators in the expansion, A(`)
λ ∝ A(1)

λ ,
and the variational approach can be seen as a resum-
mation of all higher-order terms exactly determining the
prefactor. Second, this system behaves as a two-level sys-
tem since any instantaneous Hamiltonian only couples
|↓↓〉 and |↑↑〉, leading to a single excitation frequency
which can be exactly cancelled by a single commutator.
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FIG. 3: Fidelity in the 2-qubit system (14) for the UA,
CD and FE protocol with ` = 1, 2. Parameters τ = 0.1,
J = 1, h = 2, ω0 = 10 · 2π and ω = 2.5 · 102` · ω0.

The resulting CD driving can be realized up to O(ω−20 )
using a single harmonic as

HFE(t) =

[
1 +

ω

ω0
cos(ωt)

]
H(λ(t))

− λ̇ 2hzω0 sin(ωt)

4J2 + 16(λ(t)− 1)2h2z
(σz1 + σz2) . (13)

The results are illustrated in Fig. 2, where the duration
of the protocol has been chosen in such a way that τ is
too small for the unassisted (UA) protocol to accurately
prepare the final Bell state |ψ0(λ = 1)〉 = 1√

2
(|↑↑〉+|↓↓〉).

Exact CD driving returns unit fidelity by definition,
which can be well approximated (with a final error of
the order 10−5) using the proposed Floquet-engineered
(FE) protocol.

Next, consider a two-qubit system behaving as a three-
level system,

H(λ) = −2Jσz1σ
z
2 − h (σz1 + σz2) + 2hλ (σx1 + σx2 ) , (14)

where the total spin-0 state |↑↓〉 − |↓↑〉 decouples from
the rest of the Hilbert space. Transitionless protocols in
three-level systems have recently attracted experimental
[52] and theoretical [53–55] interest, since exact proto-
cols can no longer be trivially obtained. As shown in
Fig. 3, the fidelity for the unassisted protocol is 67%, in-
creasing to 92% for ` = 1, before reaching approximate
unit fidelity (up to an error 10−6) for ` = 2. Again, for
` = 2 the variational approach returns the exact gauge
potential, without any reference to exact diagonalization,
since only two excitation frequencies are present. The FE
protocol accurately reproduces the CD protocol.
Magnetic trap. – Moving to many-body systems, we

consider the non-integrable Ising chain. Rather than
changing the magnetic field uniformly, we will consider a
more involved protocol where a local Gaussian magnetic
trap is moved across the chain, similar to the ‘optical
tweezers’ problem [56]. In this problem, a set of initially
localized spins are to be moved across the model while
minimizing dissipation. The Hamiltonian is given by

H(λ) = H0 − ht
L∑
i=1

exp

[
− (i− ct(λ))2

w2
t

]
σzi , (15)

H0 = J

L−1∑
i=1

σzi σ
z
i+1 + hz

L∑
i=1

σzi + hx

L∑
i=1

σxi , (16)

with ct(λ) = (1− λ)i0 + λif . Tuning λ from 0 to 1 then
drags the center of the trap ct(λ) with strength ht and
width wt from site i0 to if .

Rather than fidelity, we consider absorbed
energy E(t) − E0(t) = 〈ψ(t)|H(λ(t))|ψ(t)〉 −
〈ψ0(t)|H(λ(t))|ψ0(t)〉 as a measure for dissipation,
as shown in Fig. 4a for ` = 1, 2, 3. It is clear that, for
the given protocol duration, the UA protocol fails in
reproducing the final state. This is remedied by includ-
ing CD terms with ` = 1, 2, 3, reducing dissipation and
absorbed energy by a factor 20 [57]. The Floquet drive
reproduces the CD results, with only minor deviations at
intermediate times when E0(t) becomes extremal. The
CD driving is crucial in reproducing the final spin profile
σzi (Fig. 4b). While the proposed method seems to work
particularly well for this type of model, as also observed
in the optical case [58], this is representative for more
general many-body systems. Finally, note that it was
not the derivation of the gauge potential and the Floquet
drive that was the computational bottleneck, but rather
the time evolution as validation of the protocol. The
former remain applicable for arbitrary large system sizes
and should similarly lead to significant suppression of
energy losses.

Conclusion and outlook. – It was argued that the
adiabatic gauge potential can be efficiently constructed
as a series of variationally-optimized nested commuta-
tors. While constructions of the gauge potential and
CD driving in complex systems generally rely on dy-



5

0 0.2 0.4 0.6 0.8 1

t/τ

0

5

10

15

20
E

(t
)
−
E

0
(t

) ` = 3 (CD)

` = 2 (CD)

` = 1 (CD)

UA

(FE)

(FE)

(FE)

(a) Absorbed energy for the UA, CD and FE protocol with
` = 1, 2, 3.

T
ra

p

2 4 6 8 10 12

i

−0.5

0

0.5

1

〈σ
z i
〉

UA ` = 1 ` = 2 ` = 3

(b) Spin profile at time τ for the UA and the CD protocol
with ` = 1, 2, 3. Exact final profile is given in a dashed line.

FIG. 4: Moving the magnetic trap in time τ = 0.5 from
site n0 = 3 to site nf = 10 for an Ising model with

parameters L = 12, J = −1, hx = 0.8, hz = 0.9, ht = 8,
wt = 1. ω0 = 10 · 2π and ω = 104 · ω0.

namical symmetries or exactly-solvable models, the pro-
posed expansion can be constructed without having to
resort to exact diagonalization and remains well-defined
in general (chaotic) many-body systems. Due to the sim-
ilarity between this series and the Magnus expansion in
periodically-driven systems, this potential is easily real-
ized through Floquet-engineering, such that the result-
ing approximate counterdiabatic protocols can be real-
ized via Floquet driving without introducing additional
interactions. As illustrated on various few- and many-
body systems, a small number of terms can result in a
drastic increase in fidelity. This presents the usual trade-
off in fast-forward protocols, where an increase in fidelity
can be obtained provided precise control over the driv-
ing and access to large interaction strengths is available
[59–61].

In practice, this protocol is expected to mainly be use-
ful when no efficient CD protocol can be obtained or
realized, as in ergodic systems, and when a few commu-
tators already provide a large increase in fidelity (as when
e.g. the induced gap is large). The number of necessary
commutators is expected to increase with a decreasing
gap, with an additional drawback being the high ener-

getic cost of the oscillations (by now common in Floquet
systems), where higher orders necessitate higher driving
frequencies and access to higher harmonics. The pre-
sented method requires neither the presence of dynamical
invariants, scaling laws, or the closing of the commuta-
tors under some Lie algebra, common requirements for
CD driving in complex systems.

Future applications and extensions are plenty. Current
simulations were performed on spin systems, but can im-
mediately be extended towards bosonic or fermionic mod-
els. While the expansion of the gauge potential is par-
ticularly convenient for CD driving, the exact potential
contains information about the geometry of all states,
adiabatic deformations, integrability and its violations,
approximate conservation laws,..., which also follow from
the current approximation. This should allow for the
construction of approximately-conserved operators and
integrable gauge potentials analogous to integrable Flo-
quet Hamiltonians [62].
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