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Scaling arguments used to predict the radius of gyration of passive self-avoiding flexible polymers
have been shown to hold for polymers under the influence of active fluctuations. In this paper, we
establish how the standard blob scaling theory representations of a polymer, capable of capturing
the essential physics of passive polymers under a variety of settings, breaks down when dealing
with active polymers under confinement. Using numerical simulations, we show how the predicted
exponents associated to the forces applied by a polymer when restricted within cavities of different
geometries, hold only whenever the persistence length generated on the polymer by the active forces
is much smaller than the size of the characteristic blob in the scaling theory.

The way biological filaments organize within the cel-
lular milieu is of critical importance for the proper func-
tioning of the cell, and is responsible for numerous pro-
cesses including, among other things, cellular subdivision
and cell migration. The dynamics of bio-polymers such
as actin filaments and microtubules is regulated by the
availability or lack thereof ATP or GTP, energy sources
capable of powering their growth and locomotion. These
biological filaments are beautiful examples of active sys-
tems. This is an umbrella term used to indicate all those
biological [1] or synthetic systems containing components
that can be driven far-from-equilibrium by exploiting lo-
cal chemical, electrical or thermal gradients [2]. Over
the last decade, several synthetic active systems have
been developed and allowed for a systematic study of
their properties in the context of complex fluids. Several
reviews have been dedicated to the theoretical and ex-
perimental studies of colloidal active matter [3–8], with
a few reviews focusing on more specific topics such as
motility-induced phase separation (MIPS) [9, 10], Viscek
models [11], charged particles [12], self-assembly strate-
gies [13], and mechanisms of locomotion [14].

Because of their biological implications, and their role
as a minimal model where the competition between ther-
mal, elastic and active forces can be easily and systemat-
ically studied, active filaments have become the subject
of intense scrutiny over the last few years [15–28] (see
also [29] for a brief review on the subject and references
therein). Specifically, two distinct variations of these sys-
tems have been put forward: one where the active forces
are locally aligned to the backbone of the polymer, and
another where each monomer is treated as an indepen-
dent active Brownian particle and the direction of the
active forces is allowed to randomly rotate within the
backbone of the polymer. The first model was proposed
to describe the collective behavior and pattern formation
observed in systems of actin filaments activated by molec-
ular motors (see for instance [30, 31]) or strings of Janus
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dipolar particles [32], while the second model has been
designed to mimic the behavior of a passive filament sub-
ject to the random fluctuations of an embedding active
fluid. In this paper we focus exclusively on the statistical
properties of the second type of active polymer.

Interestingly, it has been shown [20] that the radius
of gyration, Rg, of an active filament of fixed number
of monomers N has a non-monotonic dependence on the
strength of the active forces for self-avoiding chains. An
initial compression of the polymer for intermediate ac-
tive forces is followed by a re-expansion at large activ-
ities. Analytical results for an ideal polymer were also
presented in [20], and indicate that the effect of the
activity can be simply mapped into an effective temper-
ature. However, more recently, it was argued [22] that
a more complex nonlinear dependence of the end-to-end
distance of the polymer should hold even for ideal chains.
Nonetheless, for a fixed active force, Rg is expected to fol-
low the Flory scaling law exhibited by its passive counter-
part when plotted as a function of N (at least for Péclet
numbers that are not too large). Recent numerical sim-
ulations have indicated that the equilibrium size scaling
for the radius of gyration of the polymer also hold for
self-avoiding flexible chains in both 2D [20] and 3D [27].
Specifically Rg ∼ Nν , with ν = 3

d+2 [33]. Here, d is the
dimension of the embedding space. This is a remarkable
and highly nontrivial result because it suggests that the
standard blob scaling theories used to understand the sta-
tistical properties of passive polymers could in principle
be employed to also understand the behavior of polymers
subject to random active fluctuations.

In this paper, we test the limits of this assumption.
Specifically, we focus on the well-established scaling laws
for passive self-avoiding polymers under confinement (see
[34–40] and references therein), and we discuss to what
extent the results obtained for an unconstrained active
filament hold when confinement is added to the picture.
One of the predictions of the blob scaling theory is that
the free energy cost required to confine a flexible self-
avoiding polymer composed of N monomers within a
cylindrical pore scales as ∆F ∼ (Rg/R)

1
ν . When con-
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sidering a confinement within a spherical cavity, the free

energy scales as ∆F ∼ (Rg/R)
d

dν−1 . It is well known
that free energies cannot be consistently defined in ac-
tive systems, yet, their derivatives, i.e. pressures and
forces the polymer exerts on confining boundaries, can be
easily measured. Using numerical simulations, we show
how these scaling laws hold for relatively weak activities
and moderate degrees of confinement, but break down
when considering active polymers under confinement in
two and three dimensions, and suggest that the blob scal-
ing picture that can be used ubiquitously for passive poly-
mers cannot always be straightforwardly exported to ac-
tive systems when constraining their fluctuations.

Our model for a flexible, active, self-avoiding polymer
consists of N monomers of diameter σ linearly connected
with harmonic springs and subject to thermal and active
forces. In this study we consider active polymers in both
two and three dimensions. Every monomer undergoes
active/Brownian dynamics at a constant temperature T
according to the following translational and rotational
equations of motion:

drrr(t)

dt
=

1

γ
fff({rij}) + vp q̂̂q̂q(t) +

√
2Dξξξ(t) (1)

dq̂̂q̂q(t)

dt
=
√

2Dr ξξξr(t)× q̂̂q̂q(t) (2)

where self-propulsion is introduced via a directional pro-
pelling velocity of constant magnitude vp and is directed
along a predefined orientation unit vector q̂̂q̂q centered at
the origin of each monomer. The translational diffusion
coefficient D is related to the temperature and the trans-
lational friction γ via the Stokes-Einstein relation D =
kBTγ

−1. Likewise, the rotational diffusion coefficient,
Dr = kBTγ

−1
r , with Dr = 3Dσ−2. The solvent induced

Gaussian white-noise terms for both the translational ξξξ
and rotational ξξξr motion are characterized by 〈ξξξ(t)〉 = 0
and 〈ξi(t)ξj(t′)〉 = δijδ(t− t′). fff({rij}) indicates the ex-
cluded volume and the harmonic forces holding the poly-
mer together. Excluded volume between the monomers is
enforced via a Weeks-Chandler-Andersen (WCA) poten-

tial U(rij) = 4ε

[(
σ
rij

)12
−
(
σ
rij

)6
+ 1

4

]
. Here ε = 1kBT .

Harmonic bonds of the form Ub = k(|ri,i+1| − σ)2 ensure
chain connectivity. Here ri,i+1 is the distance between
consecutive monomers along the chain, and k = 400kBT
is set to be large enough to ensure polymer connectiv-
ity while simultaneously minimizing bond stretching that
could arise from the action of the active forces.

When considering spherical, or the equivalent circular
confinement in two dimension, each monomer also expe-
riences a force due a WCA-like potential centered around
the origin and of radius λ, of the form

U(λ−|ri|) = 4ε

[(
σ

λ− |ri|

)12

−
(

σ

λ− |ri|

)6

+
1

4

]
(3)

This potential extends up to (λ−|ri|) = 21/6σ. With this
setup, each monomer feels a repulsive energy from the
wall of kBT , when |ri| = λ−σ. The effective confinement
radius, R, is therefore defined as R = (λ−σ)+σ/2, where
the term σ/2 is added to account for the finite size of the
monomers. An identical potential is used when enforcing
planar confinement, with the only difference that |ri| is
replaced with |hi|, the component of the particle position
vector that is perpendicular to the confining plane. In our
simulations σ and kBT are used as the units of length and
energy scales of the system, while τ = σ2D−1 is our unit
of time. All simulations were typically run for at least
109 time steps with time step ranging from ∆t = 10−4τ
to ∆t = 5×10−5τ . To quantify the strength of the active
forces it is useful to introduce the dimensionless Péclet
number defined as Pe = vpσ/D, and the characteristic
persistence length of the active path lp = vp/Dr.

We began our simulations by measuring the radius
of gyration of active polymers in two dimensions for a
range of number of monomers going from N = 64 to
N = 1024 , and we find a scaling exponent ν = 0.74(3),
consistent with the one expected by the Flory theory,
νF = 3/4 [33], for a set of Péclet numbers ranging from
10 to 80. Next, we considered the confinement of a two
dimensional (d = 2) and a three dimensional (d = 3) ac-
tive polymer between two parallel plates at a distance 2R
from each other, and within an infinitely long cylindrical
channel of radius R, respectively. As discussed above, the
free energy associated to the confinement of such poly-
mers is expected to scale as ∆F ∼ kBT (Rg/R)

1
ν . If

this scaling equation holds, then the force the polymer
exerts on the constraining walls/cylinder should scale as
fw = −∂∆F/∂R ∼ R−α, where α is expected to be equal
to (1/ν + 1).

To test this scaling assumption, we performed a series
of simulations for different degree of confinement R and a
range of values of vp. The results are shown in the log-log
plots in Figs. 1 and 2, corresponding to polymers in two
and three dimensions respectively. Here, we plotted how
the force, fw, exerted by an active polymer depends on
the degree of confinement R for different activities Pe.

Our results show unequivocally how the predictions
from the blob scaling theory fail to describe the behavior
of active polymers under confinement, and that a new
length-scale, irrelevant for the scaling behavior of an un-
bounded active polymer, emerges when confinement is
imposed upon the polymer, namely lp. More specifi-
cally, the ratio lp/R controls the behavior of the system.
In fact, we find that the dependence of the force with
the degree of confinement does not have a simple power
law behavior, but appears to be properly described by
two distinct power laws connected by a cross-over re-
gion. In the first regime, when lp/(2R) � 1, the ac-
tive polymer behaves consistently with the behavior ex-
pected from the parent passive system, albeit with a pre-
factor that depends on the Péclet number. In the sec-
ond regime, when lp/(2R) > 1, large deviations ensue.
Here, the data are still properly described by a power
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FIG. 1. Force exerted by an active polymer confined between
two parallel walls at a distance 2R from each other for dif-
ferent Péclet numbers. The dashed line shows the expected
dependence for the passive system α ' 2.33. The straight
lines are fit to the data in the activity-dominated regime.
The inset shows how the corresponding exponent α depends
on Pe.
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FIG. 2. Force exerted by an active polymer confined within a
cylinder of radius R for different Péclet numbers. The dashed
line shows the expected dependence for the passive system
α ' 2.7. The straight lines are fit to the data in the activity-
dominated regime. The inset shows how the corresponding
exponent α depends on Pe.

law, however, the associated exponent α becomes sys-
tematically smaller as the strength of the active forces in-
creases. Interestingly, the decay of α with Pe is sharper
for the three dimensional polymer within the cylinder
than for its two dimensional counterpart between the
two walls. This is clearly visible when comparing the
insets of Figs. 1 and 2. We believe that this is because
the free energy cost required to confine or compress a
two dimensional passive polymer is larger than that re-
quired to compress to the same degree of confinement,
R, a three dimensional polymer with the same number
of monomers. In fact, it can be readily shown, using for
simplicity ν = 3/(d + 2), that ∆F2d/∆F3d ' (R/σ)

1
3

for planar confinement, and ∆F2d/∆F3d ' N
1
2 (Nσ/R)

1
4

(with Nσ > R) for an isotropic compression, making
the three dimensional polymer effectively softer and more

susceptible to the action of the active forces. Figure 3

FIG. 3. Typical configurations for active polymers confined
between two walls at a distance 2R from each other, with
R = 15.5σ. The top image refers to an active polymer with
Pe = 2, while the bottom refers to the same polymer with
Pe = 80

shows typical configurations of the polymer confined be-
tween two rigid walls when lp/(2R) � 1 (top) and for
lp/(2R) > 1 (bottom). In the first case the polymer is
not strongly affected by the active force, and behaves ef-
fectively as a passive polymer at a higher temperature.
In the second case, the polymer acquires conformations
that can be best described as a mixture of collapsed con-
figurations followed by fully stretched segments. Such
highly dynamic heterogeneous conformations are clearly
not amenable to be treated with the standard blob scal-
ing representation postulating that a linear polymer can
be described as a sequence of blobs of radius R, inside of
which the monomers are essentially unperturbed by the
confinement forces and satisfy the bulk polymer statis-
tics [38].

Analogous results are obtained when considering an
active two dimensional polymer confined within a circu-
lar cavity of radius R. According to the blob scaling
theory, the pressure exerted by a passive polymer on the
boundary of the cavity is expected to scale as P ∼ ρµ

where ρ is the density of monomers inside the cavity and
the exponent for the passive system is expected to be
µ = dν/(dν − 1). In this case the size of the blob is

equal to the correlation length ξ ∼ [R2/(σ2N)]
µ
d . We

therefore expect, consistently with our results shown in
Fig. 4, deviations from the standard scaling theory for
(lp/ξ) > 1. Notice that, since ξ is much smaller than R
for even moderate degrees of confinement, already when
Pe = 25 most of the data points, obtained with a poly-
mer of N = 1024 monomers, are within the activity
dominated regime, and no cross-over from an effective
passive behavior is even detectable. In conclusion, we
studied under what conditions the blob scaling theory is
applicable to active polymers under confinement. Our
results suggest a break-down of the scaling predictions
as soon as lp becomes larger than the size of the small-
est unperturbed blob in the polymer representation. In
this regime, the forces/pressures applied on the confin-
ing geometries have a power law behavior that becomes
dependent on the Péclet number. The associated scaling
exponents systematically decrease upon increasing Pe.
Given the conformations of the active polymer inside the
cylinder (see Fig.3), it is tempting to map it into a passive
semi-flexible polymer with an effective persistence length
P ∼ lp. In the strong confinement regime, the free energy
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FIG. 4. Pressure exerted by an active polymer confined within
a circular cavity at a number density ρ = N/(πR2) for dif-
ferent Péclet numbers. The dashed line shows the expected
dependence for the passive system. The straight lines are fit
to the data in the activity-dominated regime. The inset shows
how the corresponding exponent µ depends on Pe.

cost to force such a polymer within a cylindrical pore of
radius R scales as ∆F ∼ kBTNσ/λ, where λ ∼ P 1

3R
2
3 is

the average distance between successive deflection points
of the chain in the pore [41]. This would lead to an aver-

age force applied to the cylinder that scales as fw ∼ R−
5
3 .

This exponent is inconsistent with our results. In fact,
we observe a significantly weaker dependence of fw on
R for large Pe. Although, we have not driven our sys-
tem to extreme activities, it is well known that in this
limit the force exerted by a single active particle on the
surface of a container of lateral dimension R scales as
fw = γvp exp[−R/(2lp)][42, 43], so that fw is only weakly
dependent on R when (R/lp) → 0. This is because the
time spent by a particle on the surface applying a force
becomes much larger than that required to cross the di-
mension of the confining cavity in the large vp limit, and
it is not implausible to expect a similar behavior also for
our system. Indeed, in this limit, we expect that the ma-
jor contribution to the forces on the boundaries should
be due to the active forces rather than to entropic con-
finement, thus making the radius of the cavity less and
less relevant.
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H. Löwen, J. Chem. Phys. 142, 124905 (2015).
[21] N. Samanta and R. Chakrabarti, J. Phys. A: Math.

Theor. 49, 195601 (2016).
[22] T. Eisenstecken, G. Gompper, and R. G. Winkler, Poly-

mers 8, 304 (2016).
[23] R. Chelakkot, A. Gopinath, L. Mahadevan, and M. F.

Hagan, J. R. Soc. Interface (2014).
[24] R. E. Isele-Holder, J. Elgeti, and G. Gompper, Soft Mat-

ter 11, 7181 (2015).
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