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Coupled parametric oscillators were recently employed as simulators of artificial Ising networks,
with the potential to solve computationally hard minimization problems. We demonstrate a new
dynamical regime within the simplest network - two coupled parametric oscillators, where the os-
cillators never reach a steady state, but show persistent, full-scale, coherent beats, whose frequency
reflects the coupling properties and strength. We present a detailed theoretical and experimental
study and show that this new dynamical regime appears over a wide range of parameters near the
oscillation threshold and depends on the nature of the coupling (dissipative or energy preserving).
Thus, a system of coupled parametric oscillators transcends the Ising description and manifests
unique coherent dynamics, which may have important implications for coherent computation ma-
chines.

In modern physics, the optical parametric oscillator
(OPO) is widely known due to its applications in classical
and quantum optics. Below the oscillation threshold, the
OPO generates squeezed vacuum [1–4], with applications
in metrology [5–8], micro- and nano-electromechanical
systems [9–12], quantum information [13–16] and quan-
tum communications [17, 18]. Above threshold, an OPO
is the primary source of coherent light at wavelengths
that are not laser accessible.

The working mechanism of a degenerate parametric os-
cillator is the well known period doubling instability [19].
In contrast to the lasing instability, the gain in a para-
metric oscillator depends on the phase of the oscillation,
relying on the coherent nonlinear coupling between the
pump field (at frequency γ) and the oscillation (at ex-
actly γ/2) to amplify a single quadrature component of
the oscillation field while attenuating the other quadra-
ture. The phase of the amplified quadrature can acquire
two distinct values, which give rise to two inequivalent
solutions with a relative shift of π. Each solution breaks
the time-translational symmetry of the pump, and thus
an OPO is the simplest example of a classical discrete
(Floquet) time crystal [20–29].

Borrowing the common terminology from condensed
matter, a single parametric oscillator can be viewed as a
classical two-level system (spin-1/2, or Ising spin). Based
on this analogy, it has been recently suggested that cou-
pled parametric oscillators can be used to simulate chains
or networks of Ising spins [30–40]. The Ising simula-
tion relies on the inherent mode competition and positive
feedback within the oscillators to find the most efficient
(coupled-mode) oscillation, which can reflect the ground-
state configuration of the corresponding Ising model (un-
der certain assumptions): A set of optical parametric
oscillators can therefore represent a set of independent
spin-1/2 systems, where coupling of the optical field be-
tween the oscillators gives rise to a coupled network of
spins. Depending on the coupling, any two oscillators will
prefer to phase-lock either in-phase (“ferromagnetic”, 00

or ππ) or anti-phase (“anti-ferromagnetic”, 0π or π0).
This simulator, called coherent Ising machine (CIM), can
simulate the spin dynamics and aims at calculating the
ground state of the corresponding Ising model, thereby
solving minimization problems that cannot be solved on
a classical computer.

Here, we show that the dynamics of coupled paramet-
ric oscillators extends well beyond that of coupled Ising
spins, and demonstrate a new dynamical regime of per-
sistent coherent beating between the oscillators, that ex-
ists within a broad range of parameters near the oscil-
lation threshold. We consider the simplest case of two
coupled degenerate parametric oscillators with coupling
that incorporates both energy-dissipating and energy-
preserving components, and show that the latter in-
duces a unique coherent dynamics, where the oscillators
never phase-lock, but rather display everlasting, full-scale
beats, with a stable phase difference of π/2. This is in
contrast to usual wave phenomena, where coherent beats
are normally a transient phenomenon that decays due to
decoherence, dissipation and non-linear effects. Instead,
phase locking is induced by the dissipative coupling com-
ponent. The transition from the beating to the phase-
locked regime by slow variation of the coupling properties
may be of interest to coherent computing schemes.

We realize experimentally a pair of coupled parametric
oscillators using parametrically driven radio-frequency
(RF) resonators with a tunable coupling. Our experi-
mental findings agree with the solution of an analytical
model that accounts for periodic drive, gain, losses, non-
linearities, and coupling with energy-preserving and dis-
sipative components. The dissipative component simply
reflects the possible imbalance of the couplings between
the oscillators, where the coupling rate from oscillator A
to B may be different from the coupling rate from B to
A (indicating dissipation in the coupling channels) [41].

Our main finding is that, depending on the relation
between the two coupling components, two distinct os-
cillation regimes exist: (i) When the dissipative com-



2

ponent of the coupling dominates, the system prefers
phase-locking either in-phase or anti-phase, which is the
working principle of CIMs [30]; (ii) When the energy-
preserving coupling dominates, the system displays a
richer phenomenology: When the pump frequency is
twice the bare-oscillator frequency, the system exhibits
periodic beats that never decay or lose coherence. Only
when the pump power is raised further, beyond a higher
nonlinear threshold, the oscillators phase-lock. The beat-
ing regime, which is unique to parametric oscillators and
cannot be observed in coupled lasers, represents a trajec-
tory in phase space that visits periodically all the possible
spin configurations and may have implications for the op-
eration of CIMs. This novel regime, in which the system
is not amenable to the description of Ising spins, is the
main subject of our analysis.

Theoretically, we first study the coupled system by re-
sorting to a linear stability analysis, based on Floquet’s
theorem [42–44], which allows us to characterize all the
parametric instabilities of the system without nonlinear-
ities. We then employ a multi-scale expansion [45], also
known as slow-varying envelope approximation in non-
linear optics, to determine analytically the phase diagram
of the coupled OPOs including nonlinearities. We find
four major phases of oscillation (see Fig. 1): (i) A sta-
ble phase of no oscillation below-threshold (semiclassical
squeezed noise). (ii) A CIM region slightly above thresh-
old with two possible phase-locked oscillations. This CIM
region exists only when the coupling is dominated by the
dissipative component. (iii) Further above threshold, a
region with four possibilities of phase-locked oscillation.
(iv) An extended region near threshold, where the oscil-
lators show periodic exchange of energy between them
(coherent beating) with a non-universal envelope (beat)
frequency. This beating behavior, which appears only
when the energy-preserving component of the coupling
dominates, was not addressed before, and differs from
the usual description of parametric oscillators, whose fre-
quency is dictated by the pump only. The existence of
the beating region near threshold suggests an alternative
route to the CIM behaviour: In addition to the standard
direct transition from sub-threshold to the CIM region
(arrow A on Fig. 1, right panel), the oscillators may also
cross first into the beating region (arrow B) and only
then reach the CIM phase-locked regime (arrow C).
Theoretical model. We study a system of two de-

generate single-mode parametric oscillators, with equal
gain and loss terms, coupled via energy-preserving and
energy-dissipating terms, in the presence of pump-
depletion nonlinearity. We analytically model our system
by a set of classical equations of motion:

ẍ1 + Ω2
1(t, 0)x1 + ω0g ẋ1 − ω0(r − α) ẋ2 = 0

ẍ2 + Ω2
2(t, φ)x2 + ω0g ẋ2 + ω0(r + α) ẋ1 = 0

. (1)

Here, x1 and x2 represent the oscillation amplitudes, the
resonant frequency Ω1,2(t) is parametrically modulated

FIG. 1. Stability phase diagram in the h2/(2g)2 vs. r plane,
computed from Eq. (2) with g=3.2×10−2 and β=10−2. Left:
energy-preserving coupling only (α= 0) and Right: With an
energy-dissipating coupling of α=2.2×10−3. Different colors
indicate different phases (see labels). For α= 0, the experi-
mental points (red dots and blue crosses, indicating that beats
or phase locking was experimentally observed, respectively)
are superimposed on the theoretical phase diagram.

in time as Ω2
j (t, φ) = ω2

0 [1+h(xj) sin(γt + φ)] (j = 1, 2),
with ω0 being the resonant frequency of the oscillators,
γ the pump frequency and φ the relative phase between
the pumps; h(x) = h(1−βx2) represent the normalized
pump power, where β accounts for the pump depletion
nonlinearity when the oscillation is substantial; g is the
intrinsic loss and r and α represent the energy-preserving
and energy-dissipating coupling terms, respectively.

If x1,2 are sufficiently small, the nonlinearity can be
neglected (β = 0), which is valid close to the oscillation
threshold, allowing us to diagonalize Eq. (1) by intro-
ducing the two eigenmodes x±(t)=x1(t)+q±(r, α)x2(t),
where the coefficients q±(r, α) are determined by the val-
ues of r and α. The stability analysis of the system can
then be carried out by means of a perturbative approach
based on Floquet’s theorem. We discuss here the main
results (for details, see [41]).

When the dissipative coupling dominates, α> r, there
is only one parametric resonance at γ = 2ω0. The two
eigenmodes x± have different thresholds hth,± ∼ 2g ±
2
√
α2−r2. Therefore, by increasing h above the lower

threshold, one can selectively excite x−, and for higher
h, also x+. The two modes are excited independently and
oscillate with the same frequency (γ/2), with an exponen-
tial time dependence: x±(t) ∼ e(h−hth,±)ω0t/4 cos(γt/2).
This is the standard case for CIMs.

In contrast, when the energy-preserving coupling dom-
inates, r > α, the system displays a richer phenomenol-
ogy: The coupling lifts the degeneracy between the oscil-
lators and generates two coupled modes x± with linear
eigenfrequencies ω±=ω0

(
1±
√
r2−α2/2

)
. Yet, paramet-

ric resonances of the coupled system appear in three dis-
tinct frequencies: two resonances expectedly at γ=2ω±,
which represent independent excitation of each coupled
mode; and one new, less expected resonance at γ=ω++
ω−= 2ω0, where both eigenmodes x± are excited simul-
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FIG. 2. (Top) Picture and (Bottom) scheme of the exper-
imental setup. Our parametric oscillators are implemented
in RF using standard components: (A) frequency mixer, (B)
broadband amplifier, (C) coupler, (D) power splitter coupler.

taneously, leading to full scale beats above the threshold
hth ∼ 2g: x±(t)∼ e∓iω0t

√
r2−α2/2 e(h−hth)ω0t/4 cos(γt/2).

Indeed, when pumped at γ = 2ω0, the system cannot
oscillate on a single coupled mode (due to the frequency
mismatch), but non-degenerate oscillation of both modes
is still possible. We therefore see (Fig. 1) that at r= α
the system undergoes a transition from a CIM to a coher-
ent beating behaviour. The actual existence of the three
resonances depends on the pump phase φ: when φ= 0,
only the resonance at γ=2ω0 can be excited, whereas for
φ=π only the resonances at γ=2ω± exist (for a generic
0<φ<π, all three resonances are found).

We now expand the analysis further above the thresh-
old (beyond the linear Floquet analysis) by incorporating
the nonlinearity β 6= 0 and resorting to a multiple-scale
perturbative expansion [45]. For brevity, we focus on de-
generate pumping at γ=2ω0, where the system displays
richer physics, and φ=0.

The fast time scale of the oscillator is associated
with the carrier frequency t = 2π/ω0 and the loss g is
the small expansion parameter of the theory, allowing
to identify the slow time scale τ = gt. We therefore
write x1(t, τ) = A(τ)eiω0t +A∗(τ)e−iω0t and x2(t, τ) =
B(τ)eiω0t+B∗(τ)e−iω0t, where A and B are the complex
amplitudes of x1 and x2, respectively. By normalizing
h̃=h/g, r̃= r/g and α̃=α/g, and defining τ̃ = ω0τ , the
long-time dynamics is captured by the set of ODEs [41]:

∂A

∂τ̃
=
h̃

4
A∗ −

h̃ β

4

(
3|A|2A∗ −A3

)
−
A

2
+
r̃−α̃

2
B = 0

∂B

∂τ̃
=
h̃

4
B∗ −

h̃ β

4

(
3|B|2B∗ −B3

)
−
B

2
−
r̃+α̃

2
A = 0

.

(2)
We now calculate the phase diagram of Eq. (2) in the

(h/2g)
2

vs. r plane (see Fig. 1), using tools of nonlinear

FIG. 3. (Top panels) Experimental [panels (a), (c)] and nu-
merical [panels (b), (d)] time evolution of the fields x1(t)
(blue) and x2(t) (red), and corresponding slow-varying am-
plitudes (orange and black, respectively). The data are taken
(a)-(b) just above the oscillation threshold, and (c)-(d) close
to phase locking. (e) Flow of Eq. (2) shown as the real part
of B (BR) vs. the real part of A (AR) (red lines). Saddle
and stable points are represented by black and green dots,
respectively.

dynamics [19] to determine the number of fixed points
and their stability. Below the threshold h<hth, a unique
stable fixed point exists at A=B=0 (the origin). Above
the threshold (h > hth) the origin is unstable and two
situations are encountered (α̃ 6=0): For r̃ < α̃, two stable
fixed points correspond to two preferred phased-locked
configurations - in-phase (00 or ππ) or anti-phase (0π or
π0) depending on the sign of α̃, in which the oscillators
phase-lock with a constant envelope. For larger h̃, two
additional stable points correspond to the two additional
phase-locked configurations, as discussed in the analysis
of CIMs [30]. For r̃>α̃, one first finds a stable limit cycle,
which manifests itself as beats in the time evolution of A
and B. In this region, the relative phase between the two
oscillators flips periodically between 0 and π. Only for
larger h̃, the region with two or four stable fixed points
appears. If α̃= 0 the CIM region does not exist at all.
For φ > 0, the width of the limit cycle region gradually
decreases, eventually vanishing at φ=π [41].
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Experimental methods. Since the dynamics described
here is coherent and purely classical, it is suitable to
realize the coupled parametric oscillators in a radio-
frequency (RF) configuration. Although an RF para-
metric amplifier at room temperature will not demon-
strate quantum squeezing, it can realize easily semiclas-
sical squeezing of the classical thermal noise within the
oscillator (to be reported in a future publication). Fur-
thermore, an RF experiment is technically very simple
and allows us to observe the oscillation also directly in
time (on an oscilloscope), which is a great advantage
compared to optical realizations.

The coupled parametric oscillators are realized with
two ring RF resonators (see Fig. 2) of 70 cm long coaxial
cables with a repetition rate of roughly 85 MHz. Each
resonator includes: (A) an RF frequency mixer pumped
at 170 MHz by an RF synthesizer acting as the nonlin-
ear parametric amplifier, (B) a broadband (regular) low-
noise amplifier with gain of approximately 15 dB , which
compensates for the losses of the cavity, (C) a −15 dB
coupler for the resonator output, and (D) a tunable at-
tenuator to electronically tune the overall gain of the os-
cillator. The coupling between the parametric oscilla-
tors is achieved with a fixed power splitter and a couple
of tunable attenuators to control the effective coupling.
The oscillators are pumped by two phase-locked synthe-
sizers, allowing us to control the relative phase between
the pumps (see supplemental material for more details).

Since we aim primarily at demonstrating the properties
of the beating regime (limit cycle) with energy-preserving
coupling, we mostly focus experimentally on α = 0 and
monitor the field emitted from the parametric oscillators
for various values of the pump power h with respect to the
oscillation threshold hth and various coupling strengths
r, determined by the beat frequency at threshold. Our
results are shown in Fig. 3(a)-(d). The left plots show
the experimental results, while the right panels show the
corresponding theoretical solution, obtained by numeri-
cally solving Eq. (1). The latter plots are overlapped by
the oscillation envelopes 2|A(gt)|, 2|B(gt)| (orange and
black), computed by solving the slow-varying Eq. (2).
For pumping slightly above threshold, both oscillators
demonstrate a regular, nearly sinusoidal beating envelope
over a carrier signal at half the pump frequency, which
matches the cavity resonance at 87 MHz [Fig. 3(a),(b)].
As we further increase the pump power, the period of the
beats increases and their shape becomes elongated and
pear-shaped [Fig. 3(c),(d)], until finally diverging at the
transition to a phase-locked steady-state (not shown).

In Fig. 3(e), we show the flow of Eq. (2) as BR≡<[B]
vs. AR ≡ <[A], for three different cases: slightly above
the oscillation threshold, where all fixed points are saddle
points and the limit cycle is nearly a perfect circle around
the origin, corresponding to perfect beats; just before
phase locking, where the limit cycle becomes sharper and
the beats assume an asymmetric shape; after phase lock-

FIG. 4. Experimental spectrogram of the field inside one of
the oscillators. The colormap shows the signal intensity in
a log-scale: (a) for a fixed h > hth, the system undergoes a
transition from the phase-locked to the beating regime at r =
α. (b) For a fixed r <α, the system enters the phase-locked
regime as the pump crosses the threshold (h = hth), whereas
(c) for r > α, the system instead enters the beating regime
directly above threshold. Panels (b) and (c) represent the
situations depicted by arrows A and B in Fig. 1, respectively.

ing, where stable attractors around the origin stabilize
the dynamics.

From the observed fields inside the cavities, we can
obtain an experimental phase diagram to be compared
to the theoretical behaviour discussed before (Fig. 1, left

panel). For a given set of values of (h/2g)
2

and r, we
superimpose the experimental points on the theoretical
map, marking red dots when beats are observed, and
blue crosses when phase locking is observed (using g as
a fit parameter g = 3.2×10−2). Close to phase-locking,
the system is very sensitive to noise, and the observed
behaviour alternates between beats and phase locking,
which limits the precise estimation of the experimental
transition line.

We now consider experimentally the case of α 6= 0.
Unfortunately, we cannot produce a quantitative experi-
mental map for both r,α 6= 0 due of imperfections of the
mixers in the resonator, which prevent accurate and in-
dependent calibration of both r and α when their values
are comparable. We can however obtain a spectrogram
of the beating fields, monitoring the frequency f − γ/2
(the offset from the center carrier) as r−α is scanned
from positive to negative. This shows the collapse of the
beats exactly at r=α, as shown in Fig. 4(a), where the
pump is fixed slightly above threshold. We observe a
phase-locked state for r<α, whereas for r>α the spec-
trum splits into two main symmetric branches (indicating
beats). The observed scaling of the main branch (dashed
white line) is consistent with the square-root scaling pre-
dicted in Eq. (2) [41]. The additional branches in the
spectrogram for r > α are due to the anharmonicity of
the beats close to the transition (see also Fig. 3). Pan-

els (b) and (c) show f − γ/2 as a function of (h/hth)
2

for r < α and r > α, respectively. For r < α, the sys-
tem undergoes a direct transition from below threshold
(no signal for h < hth) to phase locking (at f = γ/2),
whereas for r>α, crossing threshold leads directly to the
beating state with two symmetric frequency components



5

f − γ/2=±ω0

√
r2 − α2/2.

In conclusion, we reported a detailed study of two cou-
pled parametric oscillators, explored in an RF experi-
ment, analytically and numerically. A single parametric
oscillator, which spontaneously breaks the symmetry as-
sociated with the time-periodicity of the pump, is the
prototype example of a discrete time crystal, analogous
to an Ising spin. Although naively, one would expect this
to hold also when several parametric oscillators are cou-
pled, our study reveals a much richer phase diagram with
a new limit-cycle region, where the oscillators perform
coherent beats that never decay or decohere when the
coupling contains a significant energy-preserving compo-
nent. This beating regime represents a new class of coher-
ent dynamics that was not previously considered within
the vastly researched subject of coupled oscillators and is
unique to coupled parametric oscillators, demonstrating
a new aspect of their coherent link to the pumping field
and to each other.
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