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Higher-order topological insulators and superconductors are topological phases that exhibit novel
boundary states on corners or hinges. Recent experimental advances in controlling dissipation such
as gain/loss in atomic and optical systems provide a powerful tool for exploring non-Hermitian topo-
logical phases. Here we show that higher-order topological corner states can emerge by introducing
staggered on-site gain/loss to a Hermitian system in a trivial phase. For such a non-Hermitian
system, we establish a general bulk-corner correspondence by developing a biorthogonal nested-
Wilson-loop and edge-polarization theory, which can be applied to a wide class of non-Hermitian
systems with higher-order topological orders. The theory gives rise to topological invariants char-
acterizing the non-Hermitian topological multipole moments (i.e., corner states) that are protected
by reflection or chiral symmetry. Such gain/loss induced higher-order topological corner states can
be experimentally realized using photons in coupled cavities or cold atoms in optical lattices.

Introduction.— Topological states of matter [1–5] have
been widely studied in various systems ranging from
solid-state [6–8], over cold atomic [9–17] to photonic [18–
24] and acoustic [25–30] systems. The states are indexed
by the bulk topological invariants that determine the
boundary physics with lower dimensions. Recently, the
concept has been generalized to higher-order topologi-
cal insulators or superconductors with novel boundary
states on corners or hinges [31–50]. Different from con-
ventional first-order topological states, the d-dimensional
n-th order topological states can host (d−n)-dimensional
gapless boundary states. The experimental realizations
of such interesting higher-order topological states in pho-
tonic [37–40] and electrical circuit [41, 42] systems further
enlighten the research of these novel topological matters.

Meanwhile, the search for topological states of mat-
ter has also turned to open quantum systems charac-
terized by non-Hermitian Hamiltonians [51], which ex-
hibit a rich variety of unique properties without Hermi-
tian counterparts [52]. States modeled by non-Hermitian
Hamiltonians appear in systems such as photonic struc-
tures with loss or gain [53–64], and cold atomic systems
or solid-state materials with finite (quasi-)particle life-
time [65–72]. The eigenvalues are generally complex, and
the right and left eigenstates, satisfying biorthonormolity
constrains, are no longer equivalent to each other (nei-
ther of them form an orthogonal basis). Moreover, more
than one right eigenstates can coalesce at exceptional
points [70]. Such unique properties lead to a rich va-
riety of interesting topological phenomena (e.g., the non-
Hermitian skin effects, exceptional rings, bulk fermi arcs,
etc.), with bulk-boundary correspondence very different
from the Hermitian systems [73–91].

The effects of non-Hermiticity on higher-order topo-
logical physics have been considered recently in a few
works [92–96], where the non-Hermiticity is induced by
asymmetric tunnelings, leading to the observation of in-
teresting phenomena such as higher-order skin effect [92]
and biorthogonal bulk polarization [96]. Nevertheless, a
general bulk-corner correspondence of the non-Hermitian

higher-order topological states is still elusive. In ad-
dition, compared to asymmetric tunnelings, a simpler
and more tunable way for introducing non-Hermiticity
in photonic and atomic experiments is to control the on-
site particle dissipations directly. Therefore two natural
questions arise: i) Can higher-order topological states
be induced by simply controlling the on-site gain or loss?
ii) Is there a general bulk-corner correspondence for the
non-Hermitian higher-order topological states?

In this Letter, we address these two important ques-
tions by considering a 2-dimensional (2D) lattice model
with staggered on-site particle gain/loss. Our main re-
sults are:

i) The non-Hermitian particle gain and loss can drive
the system from a trivial phase to a second-order topolog-
ical phase with the emergence of four degenerate corner
states.

ii) We develop the biorthogonal nested-Wilson-loop
and edge-polarization approach which gives rise to bulk
topological invariants responsible for the gapless corner
states. The topological invariants are protected by reflec-
tion or chiral symmetries. In the presence of additional
C4 rotation symmetry, the topology can also be charac-
terized by a quantized biorthogonal winding number.

iii) Although we focus on 2D reflection-symmetric
case, our model and the bulk-corner correspondence can
be generalized to study d-dimensional d-th order non-
Hermitian topological states with either reflection or chi-
ral symmetries.

iv) Simple experimental schemes based on photons in
coupled cavities and cold atoms in optical lattices are
proposed. Our system only relies on the manipulation of
on-site particle gain/loss, and is ready for experimental
exploration.

The model.— We consider a 2D lattice model with
staggered tunnelings along both horizontal and vertical
directions, as shown in Fig. 1(a). There is an effective
magnetic flux φ = π for each plaquette, which appears
as the tunneling phases on the dashed lines. The non-
Hermiticity is introduced by the particle loss (gain) on all
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FIG. 1: (a) Lattice representation of the non-Hermitian model
in Eq. 1. All sites in blue (red) have particle loss (gain) with
a rate γ. φ is the magnetic flux for each plaquette, and Jh,v
(λh,v) are the tunneling amplitudes between sites in differ-
ent color (shape) along the horizontal and vertical directions,
respectively. (b) Experimental implementation of the lattice
model in (a) using coupled arrays of micro-ring cavities.

blue (red) lattice sites. We choose 16 orbitals in Fig. 1(a)
as our unit cell with horizontal and vertical primitive-
lattice vectors. The Hamiltonian reads

H(k) = Jhσ
x
h + Jvσ

x
vσ

φ
h + iγσzhσ

z
vτ
z
hτ

z
v

+λh(τ−h σ
+
h + e−ikxτ−h σ

−
h + h.c.) (1)

+λvσ
φ
h(τ−v σ

+
v + e−ikyτ−v σ

−
v + h.c.),

where Jh,v > 0 (λh,v > 0) are the nearest-neighbour
tunneling amplitudes between red and blue (circle and
square) sites, σh,v (τh,v) are the Pauli matrices for the
degrees of freedom spanned by red and blue (circle and
square) sites, and h, v represent the horizontal and ver-

tical directions, respectively. σφh,v = σzh,v for φ = π. The
gain/loss rate γ in Eq. 1 is positive since the blue sites are
lossy. Alternatively, we may consider a different gain/loss
configuration with gain (loss) on blue (red) sites, which
simply changes γ to negative. In experiments, the Hamil-
tonian can be realized using cold atoms in optical lat-
tices or photons in coupled cavities [97]. Fig. 1 (b) is an
example based on arrays of coupled micro-ring cavities,
where the coupling amplitude and phase between neigh-
bour cavities, and the photon gain/loss for each cavity
can be controlled independently [40, 61].

Corner states.— For simplicity, we assume Jh = Jv ≡
J throughout this paper, and the physics for Jh 6= Jv is
similar. The system has 16 bands [97], which appear in
pairs E(k) = −E∗(k) due to the pseudo-anti-Hermiticity
ηHη = −H† with η = σzhσ

z
vτ
z
hτ

z
v . We are interested in

the half-filling gap around Re[E] = 0. We focus on the
region λh(v) ≤ J (the system stays in the trivial insulat-
ing/metal phase at the Hermitian limit γ = 0 [31, 32]),
and show that the second-order topological corner states
can be induced solely by non-Hermitian gain and loss.

In Figs. 2(a) and (b), we plot the energy spectrum
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FIG. 2: (a) (b) Energy spectra of the non-Hermitian Hamil-
tonian Eq. 1 with open boundaries in both directions. The
bulk energy gap closes at |γ| = γc, where a topological phase
transition occurs and in-gap corner states (red curves with
four-fold degeneracy) emerge at |γ| > γc. (c) Typical density
distributions |ΨR

corner(x, y)|2 of the four corner states, with
|ΨR

corner(x, y)〉 the right eigenstate. The inset shows the cor-
responding eigenenergies around the four corner states with
Re[E] = 0. (d) Typical density distributions of the bulk
states. γ = 2 in (c) and (d). Common parameters: sys-
tem size Nh = Nv = 20 (unit cells), J =

√
2 and λv = 1

(leading to γc =
√

2). We set λh = 1 as energy unit.

as a function of γ, with open boundaries along both di-
rections. Effectively, the particle loss reduces the tun-
nelings between gain and loss sites, while the tunnelings
between two loss (gain) sites are not affected. We see
that as |γ| increases, the bulk gap closes and reopens
(the small derivation is the finite size effect) at a crit-
ical point γc, leading to a topological phase transition
with the emergency of four in-gap states. The typical
density distributions of these in-gap states are shown in
Fig. 2(c), which are well localized at four corners. We
emphasize that our system does not suffer from the non-
Hermitian skin effects due to the trivial eigenenergy vor-
ticity [80]

∮
∂kArg[E(k)]dk = 0 for any loop in the mo-

mentum space, therefore it does not matter whether the
right or/and left eigenstates are used to calculate the
density distribution. As a result, the bulk states of H(k)
do distribute in the bulk [see Fig. 2(d)], and the open-
boundary bulk spectrum is the same as that for periodic
boundaries. We set λh = λv in Fig. 2, therefore the
system undergoes a bulk gap closing across the topolog-
ical phase transition due to the C4 symmetry [45]. In
general, the second-order topology can be altered by the
gap closing in either the bulk or edge spectrum, and the
emergency of corner states does not require bulk energy
gap closing for λh 6= λv [32, 45], which will be further
illustrated.
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Topological invariants.— For Hermitian systems, it
was shown that the topology of the nested Wilson loop
and edge polarization are responsible for the corner
states [31, 32]. Here we develop their non-Hermitian
counterparts and show that the non-Hermitian corner
states are originated from the topology of the generalized
biorthogonal nested Wilson loops and edge polarizations.
We consider a general Hamiltonian H(k) on a torus with
periodic boundaries and define the biorthogonal Wilson
loop operator as

Wh,k = P exp[i

∫ kx+2π

kx

Ah(k′x, ky)dk′x], (2)

where Ah(k) = −i〈uLn,k|∂kx |uRm,k〉 is the biorthogo-
nal non-Abelian Berry connection in the horizontal di-
rection, |uR,Lm,k〉 are the m-th occupied right and left

Bloch eigenstates satisfying H(k)|uRm,k〉 = Em(k)|uRm,k〉,
H†(k)|uLm,k〉 = E∗m(k)|uLm,k〉 and 〈uLn,k|uRm,k〉 = δn,m,
and P is the path-ordering operator. Different from the
Hermitian case [31], Wh,k may no longer be a unitary
operator, and leads to a non-Hermitian Wannier Hamil-
tonian HWh

(k) = − i
2π logWh,k, which also has differ-

ent left and right eigenstates, that is, HWh
(k)|εRh,j,k〉 =

εh,j,ky |εRh,j,k〉, H†Wh
(k)|εLh,j,k〉 = ε∗h,j,ky |ε

L
h,j,k〉 with

〈εLh,j,k|εRh,j′,k〉 = δj,j′ and j the Wannier band in-
dex. The non-Hermitian Wannier bands (independent
from kx), which obey the identification Re[εh,j,ky ] ≡
Re[εh,j,ky ] mod 1, can carry topological invariants if they
are gapped.

The biorthogonal vertical polarization for the Wannier
band sector εh can be defined as

pεhv = − i

4π2

∫
dkx log det[W̃h,k]. (3)

Here W̃h,k is the biorthogonal nested Wilson loop along
the vertical direction, which is defined on the Wan-
nier sector εh with non-Hermitian Wannier-band basis
|wR(L)
h,j,k〉 =

∑Nocc

m=1 |u
R(L)
m,k 〉[|ε

R(L)
h,j,k〉]m (Nocc is the number of

occupied energy bands and 〈wLh,j,k|wRh,j′,k〉 = δj,j′) [97].
Similarly, we can obtain the biorthogonal nested Wilson
loop along the horizontal direction and the correspond-
ing polarization pεvh . There would be corner states when
p
εv,h

h,v are non-trivial.

On the other hand, even for trivial p
εv,h

h,v , one may
still have corner states if the edge polarization is non-
trivial [32]. For non-Hermitian systems, we should use
the biorthogonal edge polarization, which are obtained
by considering a cylindrical geometry and calculating
the pseudo-one-dimensional biorthogonal Wannier val-
ues (εh,j or εv,j) and polarization (pivh or pihv with iv
or ih the unit-cell index along the open direction) along
the periodic direction (horizontal or vertical) [97]. The
second-order corner modes are characterized by the van-

ishing bulk polarization (i.e., iv,h away from 1 and Nv,h),

but quantized non-zero edge-localized polarization pedge
h

and/or pedge
v (i.e., iv,h near 1 or Nv,h) [97].

In general, higher-order topological phases are
protected by symmetries [31, 32]. We consider a
Hamiltonian that respects either reflection sym-
metries MhH(kx, ky)M−1

h = H(−kx, ky) and
MvH(kx, ky)M−1

v = H(kx,−ky), or chiral (sublat-
tice) symmetry ΞH(kx, ky)Ξ−1 = −H(kx, ky), with
symmetry operators given by Mh, Mv or Ξ. Since the
biorthogonal Wannier bands or values (on a torus or
cylinder) change the signs under reflection operation,
they are either flat bands locked at 0 or 1

2 , or appear in
±ε pairs for reflection-symmetric systems. The reflection
symmetries also ensure the quantization of (pεvh , pεhv ) and

(pedge
h , pedge

v ) with value 0 or 1
2 . Similar properties hold

for the chiral-symmetric systems with non-Hermiticity
induced by asymmetric tunneling [97].

The Wannier bands correspond to the position of the
particle density cloud [31, 32]. We focus on the Wannier
sectors ∈ (0, 1

2 ) [or ∈ ( 1
2 , 1)] which are responsible for the

edge topology and corner states. Based on the Wannier-
sector and edge polarizations, we define two topological
invariants: Q1 = 4pεhv p

εv
h mod 2 [with εv,h the Wannier

sector ∈ (0, 1
2 )] and Q2 = 2(pedge

h +pedge
v ) mod 2. For the

topological phase, we have either Q1 = 1 orQ2 = 1; while
for the trivial phase, we have both Q1 = 0 and Q2 = 0.
The above bulk-corner correspondence can apply to any
non-Hermitian systems with reflection or chiral symme-
tries, and are reduced to the normal nested-Wilson-loop
and edge-polarization theory [31] in the Hermitian limit.

Phase diagram.— As an example, we study the phase
diagram of the model in Fig. 1 based on the biorthogonal
topological invariants. The corresponding Hamiltonian
satisfies reflection symmetries with Mh = σφvσ

x
hτ

x
h and

Mv = σxv τ
x
v . It also possesses the rotational symmetry

C4H(kx, ky)C−1
4 = H(ky,−kx) if λh = λv, where C4 =

Cτ ⊗ Cσ with

Cτ =
1

2

∑
s 6=s̄

[
τ+
s (

1− τzs̄
2

) + τ−s (
1 + τzs̄

2
)

]
, (4)

and Cσ has a similar expression with s, s̄ = {h, v}. In
Fig. 3(a), we show the phase diagram in the γ-λv plane
with J/λh =

√
2. The phase diagram is symmetric with

respect to γ = 0, so we focus on γ ≥ 0. The right and
left parts of the phase diagram belong to topological and
trivial phases, with their boundary given by the solid
line. The trivial phase enlarges with the phase boundary
shifting rightward as we increase J . There are two topo-
logical phases: T-I with (Q1, Q2) = (1, 0) and T-II with
(Q1, Q2) = (0, 1).

We first consider the C4 symmetric case for λv = λh,
with the open-boundary spectra shown in Fig. 2(a). The
typical Wannier bands for the Hamiltonian Eq. 1 with
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FIG. 3: (a) Phase diagram in the γ-λv plane for J =
√

2λh,
with one trivial phase [yellow area with (Q1, Q2) = (0, 0)] and
two topological phases [T-I: orange area with (1, 0) and T-II:
green area with (0, 1)]. The patterned region has a vanishing
Wannier-band gap [97]. (b) Wannier band structures with
λv = λh and γ = 2 [the blue square in (a)]. The imaginary
parts are locked at 0. (c) Wannier-sector (green circles) and
edge (purple circles) polarizations as well as topological in-
variant Q1 (red squares) and winding number W (blue stars),
with λv = λh [the thin green line in (a)]. (d) Complex energy
spectra with open boundaries [Nh = Nv = 20 (unit cells)] and
λv = 0.6λh [the thin blue line in (a)]. The bulk gap persists
upon the phase transition. We set λh = 1 as the energy unit.

periodic boundaries are shown in Fig. 3(b). There are
8 Wannier bands, with four located around ε = 0, two
at 0 < Re[ε] < 1

2 and two at 0 > Re[ε] > − 1
2 , form-

ing three Wannier sectors labeled by 0,±, as shown in
Fig. 3(b). Only the ‘±’-Wannier sectors are responsible
for the edge topology and corner states. In fact, the ‘0’-
Wannier sector is trivial in the whole parameter space
and the ‘±’-Wannier sectors always have the same topol-
ogy. Due to the C4 symmetry, we have pεv=±

h = pεh=±
v

and pedge
h = pedge

v , all of which jump from 0 to 1
2 across

the phase transition as γ increases [see Fig. 3(c)]. We
would like to point out that, with C4 symmetry, the
topology can also be characterized by the biorthogonal
winding numberW along the high-symmetry line kx = ky
in the reflection-rotation (C4Mh) subspace [97].

For λv 6= λh, the bulk energy gap persists [see
Fig. 3(d)], and the phase transitions are driven by gap
close/reopen in the edge spectra and the Wannier bands,
which lead to polarization jumps. In the following, we
focus on λv < λh without loss of generality, and show
how the topological invariants and phases change as we
increase γ, as shown in Figs. 4(a) and (b). (i) First, the
vertical Wannier bands εv,j,k close the gap between ‘0’
and ‘±’ sectors in the patterned region in Fig. 3(a) [97].
Further increasing γ reopens the gap and leads to the
the jump of pεv=±

h from 0 to 1
2 . (ii) Then, the gap for

the edge spectra closes and reopens on the red solid line,
where pedge

v jumps from 0 to 1
2 and the system enters the
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FIG. 4: (a) and (b) The horizontal (blue circles) and verti-
cal (red crosses) polarizations for λv = 0.6λh [along the thin
blue line in Fig. 3(a)]. The polarization pεvh is ill-defined in
the patterned region due to the vanishing gap between Wan-
nier sectors. The phase boundaries are given by the solid
lines. (c) and (d) The Wannier values (εh,j , εv,j) and edge-

polarization distributions (pivh , p
ih
v ) for the cylindrical geome-

try with λv = 0.6λh and γ = 1.9 [indicated by the red cross in
Fig. 3(a)]. Blue circles (red crosses) are the results for open
boundary along horizontal (vertical) direction. The in gap
Wannier values at 1

2
are responsible for the edge polarization.

Other parameters are the same as in Fig. 3.

T-II phase with the emergence of corner states. Shown
in Figs. 4(c) and (d) are the Wannier values (εh,j and
εv,j) and edge-polarization distribution (pivh and pihv ) for
the phase T-II on a cylinder. (iii) Finally, εh,j,k close
the gap between ‘+’ and ‘−’ sectors on the black solid
line, where both pεh=±

v and pedge
h jump from 0 to 1

2 , and
we reach the T-I phase. Both T-I and T-II phases sup-
port corner states, and they are distinguished by the edge
topology [97]. The T-II phase region shrinks to zero as
λv approaches λh, where all edge and Wannier-sector po-
larizations jump at the same γ due to the C4 symmetry.
These phenomena are very different from the Hermitian
case. Especially, one can only have the topological phase
T-I for the Hermitian limit, where all edge polarizations
must vanish as long as Q1 = 0 [32]. The appearance of
phase T-II is a result of the interplay between the non-
Hermiticity and the C4 symmetry breaking [97].
Discussions.— It is possible to generalize our study

by considering different flux configurations. As a simple
example, one may consider φ = 0 and set σφh,v = σ0

h,v

in the Hamiltonian Eq. 1. For such a zero flux model,
the Hermitian part is a gapless metal when |λh − λv| ≤
2J . The gain/loss term effectively reduces the tunnel-
ing J and can open a topological gap with in-gap corner
states [97]. Moreover, it is straightforward to general-
ize our non-Hermitian model and bulk-corner correspon-
dence to higher-dimensional systems (e.g., 3D system
supporting third-order topological phases with quantized
octupole moment) [97]. Finally, we consider a general
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asymmetric-tunneling model (without on-site gain/loss)
as an example of chiral symmetric systems, and confirm
the bulk-corner correspondence numerically [97]. The
asymmetric tunnelings break both the Hermiticity and
reflection symmetries (other symmetries like C4 rotation
or reflection-rotation C4Mh are also broken). As we in-
crease the strength of the non-Hermiticity (i.e., asym-
metry), the system can transform from the trivial phase
to the second-order topological phase with zero-energy
modes at four corners, which are characterized by the
non-trivial topology of the biorthogonal nested Wilson
loops [97].

Conclusion.— In summary, we propose a scheme to
realize non-Hermitian higher-order topological insulators
by simply controlling the on-site gain or loss, and show
that the non-Hermitian corner states are characterized
by the bulk topology in the form of biorthogonal nested
Wilson loops or edge polarizations. The generalized
bulk-corner correspondence may work for a wide class of
non-Hermitian d-dimensional d-order topological systems
with reflection or chiral symmetries. The proposed model
can be realized easily in experiments. Our work offers a
tunable method for manipulating corner states through
dissipation control, and paves the way for the study of
various non-Hermiticity induced higher-order topological
states of matter and the classifications of them.
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T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo,
Lasing in topological edge states of a one-dimensional lat-
tice, Nat. Photon. 11, 651 (2017).

[64] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren,

https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/s41586-018-0367-9
https://doi.org/10.1038/s41586-018-0367-9
http://dx.doi.org/10.1103/PhysRevLett.120.116802
https://doi.org/10.1038/s42254-019-0030-x
https://doi.org/10.1038/s42254-019-0030-x
http://dx.doi.org/10.1126/science.aah6442
http://dx.doi.org/10.1126/science.aah6442
http://dx.doi.org/10.1103/PhysRevB.96.245115
http://dx.doi.org/10.1103/PhysRevLett.119.246401
http://dx.doi.org/10.1103/PhysRevLett.119.246401
http://dx.doi.org/10.1103/PhysRevLett.119.246402
http://dx.doi.org/10.1103/PhysRevB.98.241103
http://dx.doi.org/10.1126/sciadv.aat0346
https://arxiv.org/abs/1812.08185
http://dx.doi.org/10.1103/PhysRevB.98.205147
http://dx.doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1038/nature25156
https://arxiv.org/abs/1812.09304
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
http://dx.doi.org/10.1103/PhysRevLett.120.026801
http://dx.doi.org/10.1103/PhysRevB.97.241405
http://dx.doi.org/10.1103/PhysRevB.97.205135
http://dx.doi.org/10.1103/PhysRevB.97.205135
http://dx.doi.org/10.1103/PhysRevLett.121.186801
http://dx.doi.org/10.1103/PhysRevLett.121.186801
http://dx.doi.org/10.1103/PhysRevLett.121.096803
http://dx.doi.org/10.1103/PhysRevLett.121.096803
http://dx.doi.org/10.1103/PhysRevX.9.011012
http://dx.doi.org/10.1103/PhysRevLett.121.196801
https://arxiv.org/abs/1901.07579
https://arxiv.org/abs/1901.07579
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1140/epjst/e2018-800091-5
http://dx.doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1038/nature11298
http://dx.doi.org/10.1103/PhysRevLett.115.200402
https://dx.doi.org/10.1364/PRJ.6.000A51
https://dx.doi.org/10.1364/PRJ.6.000A51
http://dx.doi.org/10.1103/PhysRevLett.113.053604
http://dx.doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1126/science.1258004
http://dx.doi.org/10.1103/PhysRevLett.115.040402
http://dx.doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1038/nmat4811
https://doi.org/10.1038/nmat4811
https://doi.org/10.1038/s41467-018-03434-2
http://dx.doi.org/10.1103/PhysRevLett.120.113901
http://dx.doi.org/10.1103/PhysRevLett.120.113901
https://doi.org/10.1038/s41566-017-0006-2


7

M. Segev, D. N. Christodoulides, and M. Khajavikhan,
Topological insulator laser: Experiments, Science 359,
eaar4005 (2018).

[65] M. Müller, S. Diehl, G. Pupillo, and P. Zoller, Engineered
open systems and quantum simulations with atoms and
ions, Adv. At. Mol. Opt. Phys. 61, 1 (2012).

[66] Y. Ashida, S. Furukawa, and M. Ueda, Parity-time-
symmetric quantum critical phenomena, Nat. Commun.
8, 15791 (2017).

[67] H. Shen, and L. Fu, Quantum Oscillation from In-
Gap States and a Non-Hermitian Landau Level Problem,
Phys. Rev. Lett. 121, 026403 (2018).

[68] M. Papaj, H. Isobe, and L. Fu, Nodal arc of disordered
Dirac fermions and non-Hermitian band theory, Phys.
Rev. B 99, 201107 (2019).

[69] T. Yoshida, R. Peters, and N. Kawakami, Non-Hermitian
perspective of the band structure in heavy-fermion sys-
tems, Phys. Rev. B 98, 035141 (2018).

[70] Y. Xu, S.-T. Wang, and L.-M. Duan, Weyl Exceptional
Rings in a Three-Dimensional Dissipative Cold Atomic
Gas, Phys. Rev. Lett. 118, 045701 (2017).

[71] J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and
L. Luo, Observation of parity-time symmetry breaking
transitions in a dissipative Floquet system of ultracold
atoms, Nat. Commun. 10, 855 (2019).

[72] S. Lapp, J. Angonga, F. A. An, and B. Gadway, En-
gineering tunable local loss in a synthetic lattice of mo-
mentum states, New J. Phys. 21, 045006 (2019).

[73] F. K. Kunst, E. Edvardsson, J. C. Budich, and
E. J. Bergholtz, Biorthogonal Bulk-Boundary Correspon-
dence in Non-Hermitian Systems, Phys. Rev. Lett. 121,
026808 (2018).

[74] K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Edge
states and topological phases in non-Hermitian systems,
Phys. Rev. B 84, 205128 (2011).

[75] T. E. Lee, Anomalous Edge State in a Non-Hermitian
Lattice, Phys. Rev. Lett. 116, 133903 (2016).

[76] A. K. Harter, T. E. Lee, and Y. N. Joglekar, PT -
breaking threshold in spatially asymmetric Aubry-André
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