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Using recent high-precision measurements of electric dipole matrix elements of atomic cesium,
we make an improved determination of the scalar (α) and vector (β) polarizabilities of the cesium
6s 2S1/2 → 7s 2S1/2 transition calculated through a sum-over-states method. We report values

of α = −268.82 (30) a30 and β = 27.139 (42) a30 with the highest precision to date. We find a
discrepancy between our value of β and the past preferred value, resulting in a significant shift in
the value of the weak charge Qw of the cesium nucleus. Future work to resolve the differences in the
polarizability will be critical for interpretation of parity non-conservation measurements in cesium,
which have implications for physics beyond the Standard Model.

Precision measurements of weak optical interactions
in atoms can provide a sensitive means of probing the
weak force between nucleons and electrons at low momen-
tum transfer [1, 2]. The extent to which atomic parity
non-conservation (PNC) measurements agree with stan-
dard model predictions can provide constraints on con-
jectures of ‘beyond standard model’ physics, which are
based on new additional interactions involving, for ex-
ample, a massive Z ′ boson [3–7], a light boson [8–10],
or axion-like particles [11, 12], or searches of dark en-
ergy [13–16]. Recent theoretical searches for dark mat-
ter [17–19] are based on a hypothesized light dark boson
that decays primarily to dark matter, but which also in-
teracts weakly with standard model matter.

The most precise determination of the weak charge
through atomic PNC measurements to date was carried
out in atomic cesium. This determination is based on a
precise measurement of the ratio Im(EPNC)/β by Wood
et al. [20], where Im(EPNC) is the electric dipole tran-
sition moment for the 6s 2S1/2 → 7s 2S1/2 transition
induced by the weak force interaction, and β is the vec-
tor polarizability for the transition. The weak charge Qw

is determined then as the product of Im(EPNC)/β, the
polarizability β, and a proportionality factor kPNC ≡
Qw/Im(EPNC), which must be determined through dif-
ficult atomic structure calculations [3–5, 21–30]. A new
determination of Im(EPNC)/β is currently under develop-
ment in our laboratory, and Derevianko has announced
plans to undertake a new calculation of kPNC [31]. In
this paper, we report a new determination of the vector
polarizability β, which is of higher precision than, but
differs from, the previously accepted value [32, 33].

Since 2000, the most precise determination of β has
been based upon a theoretical value for the hyperfine-
changing magnetic dipole matrix element M1hf [32], and
a laboratory determination of the ratio M1hf/β [33].

With a precision of 0.19%, this value of β has been pre-
ferred over the value determined from a calculation of
the scalar polarizability α using a sum-over-states ap-
proach [23, 28, 34, 35], combined with a measurement
of the ratio α/β [36]. The latter method requires pre-
cise measurements or theoretical values for the reduced
electric dipole (E1) matrix elements 〈npJ ||r||ms1/2〉 with
m = 6 or 7, n ≥ 6 and J = 1/2 or 3/2. Many of these
matrix elements were measured to great precision in the
past thirty years [35, 37–51], and in the last 3 years, our
group has undertaken and completed high-precision mea-
surements of the remainder of these eight matrix elements
[52–54].

We first present a new determination of α through a
sum-over-states method [23, 35]
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where 〈npJ ||r||ms1/2〉 are the E1 transition matrix ele-
ments, Ems and EnpJ

are state energies, and J = 1/2 or
3/2 is the electronic angular momentum of the state.

We show the E1 matrix elements 〈7s1/2||r||npJ〉 and
〈npJ ||r||6s1/2〉, and state energies EnpJ

for states with
principal quantum number 6 ≤ n ≤ 12 used for our sum-
over-states calculation in Table I. In earlier calculations
of α [34, 35], the terms contributing the most to the 0.4%
uncertainty in α = 269.7(11) a30 were the 〈7s1/2||r||6pJ〉
and 〈7pJ ||r||6s1/2〉 matrix elements whose uncertainties
at that time were 0.5% and 0.6%, respectively. (The
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TABLE I. E1 matrix elements, eigenstate energies, and contributions to the scalar polarizability α. This table shows our
sum-over-states calculation, as given in Eq. (1), of the scalar polarizability α. E1 elements for n = 6 and 7, above the dashed
line, are experimental values, as discussed in the text. aRefs. [52, 53], bRefs. [38–41, 43–47, 50, 51], cRef. [42] and this work,
dRef. [54]. Theory values of E1 elements (8 ≤ n ≤ 12) are from Ref. [55] including the Supplemental Information. State energies
(rounded here to two decimal places after the point) are found in NIST tables [56].

n d (a0) δd(%) δα (a30) d (a0) δd(%) δα (a30) Enp1/2 (cm−1) α (a30) δα (a30)

〈7s1/2||r||np1/2〉 〈np1/2||r||6s1/2〉
6 −4.249a 0.094 0.031 4.5057b 0.035 0.011 11178.27 −32.54 0.03
7 10.325c 0.05 0.019 0.2781d 0.16 0.060 21765.35 −37.35 0.06
8 0.914 2.9 0.016 0.092 11 0.061 25708.84 −0.55 0.06
9 0.349 2.9 0.002 0.043 16 0.013 27637.00 −0.08 0.01
10 0.191 3.1 0.001 0.025 20 0.005 28726.81 −0.02 0.00
11 0.125 3.5 0.000 0.016 27 0.002 29403.42 −0.01 0.00
12 0.09 3.9 0.000 0.012 28 0.001 29852.68 −0.00 0.00

〈7s1/2||r||np3/2〉 〈np3/2||r||6s1/2〉
6 −6.489a 0.077 0.072 −6.3398b 0.035 0.033 11732.31 −92.93 0.08
7 14.344c 0.05 0.051 −0.5742d 0.10 0.101 21946.39 −102.05 0.11
8 1.62 2.2 0.053 −0.232 6.2 0.151 25791.51 −2.43 0.16
9 0.68 2.1 0.010 −0.130 7.4 0.035 27681.68 −0.47 0.04
10 0.396 2.2 0.004 −0.086 8.3 0.014 28753.68 −0.17 0.01
11 0.270 2.4 0.002 −0.063 8.9 0.007 29420.82 −0.08 0.01
12 0.201 3.7 0.002 −0.049 9.5 0.004 29864.54 −0.04 0.00

αn>12 = −0.30 0.15
αvc = +0.2 0.1
α = −268.82 0.30

numbers in brackets following the value denote the 1 σ
uncertainty in the least significant digits.) In the follow-
ing paragraphs, we summarize the recent contributions
towards these matrix elements, which enable us to calcu-
late a more precise value for α.

6s-6p The values for the 〈6s1/2||r||6pJ〉 matrix el-
ements have been measured precisely in a variety of
experiments. These include fast-beam laser [38, 41],
time-resolved fluorescence [39], ultra-fast pump-probe
laser [50], photoassociation [43, 45, 47], ground-state po-
larizability [44] and atom interferometry [51]. We take
the weighted average of these measurements, to obtain a
precision of ∼ 0.035% for these matrix elements.

7s-6p In 2017, we used an asynchronous gated de-
tection technique with a single-photon detector to mea-
sure the lifetime of the 7s state to a precision of 0.14%
[52]. We combine this high precision lifetime measure-
ment with a measurement of the ratio of dipole matrix
elements 〈7s1/2||r||6p3/2〉/〈7s1/2||r||6p1/2〉 [53] in order
to determine the individual matrix elements to a preci-
sion of < 0.1%. This ratio measurement was based upon
measurements of the influence of laser polarization on the
two-photon 6s→ 7s transition rate.

7s-7p We derive new values for the 7s−7p matrix el-
ements from a dc Stark shift ∆α6s7s measurement of the
6s → 7s transition [42], and our high precision determi-
nations of the 7s− 6p matrix elements. This is the same
method as used in Ref. [34]. The static polarizability α7s

depends primarily on the 7s− 7p and 7s− 6p values. We
use ∆α6s7s [42] and high precision measurements of the

ground state static polarizability α6s [44, 51] to calculate
the static polarizability α7s of the 7s state. We also use
theoretical calculations of the ratio of 7s − 7pJ matrix
elements R7s7p = |〈7s1/2||r||7p3/2〉/〈7s1/2||r||7p1/2〉| =
1.3892 (3) [34] and for the 7s − np matrix elements
where n > 7 [55]. The results of our determination are
〈7s1/2||r||7p1/2〉 = 10.325 (5) a0 and 〈7s1/2||r||7p3/2〉 =
14.344(7) a0, an improvement in precision from 0.15% in
[34] to 0.05% as presented here.

6s-7p Most recently, we have completed a com-
prehensive study of the 6s → 7p3/2 (λ = 456
nm) and 6s → 7p1/2 (λ = 459 nm) line ab-
sorption strengths to determine the transition ma-
trix elements 〈6s1/2||r||7p3/2〉 and 〈6s1/2||r||7p1/2〉
[54]. These comparative studies yield the ratios of
matrix elements 〈6s1/2||r||6p1/2〉/〈6s1/2||r||7p3/2〉 and
〈6s1/2||r||7p3/2〉/〈6s1/2||r||7p1/2〉. Then by using the
very precise value of 〈6s1/2||r||6p1/2〉 [38–41, 43–45, 47,
50, 51], we obtain a value of 〈6s1/2||r||7p3/2〉 with 0.10%
uncertainty, and of 〈6s1/2||r||7p1/2〉 with 0.16% uncer-
tainty.

In Fig. 1 we show a plot that illustrates the current
state of theory and experiment for these eight matrix
elements. (This plot is an updated version of a plot
that first appeared as Fig. 2 of [3].) Specifically, this
plot shows the experimental uncertainties and the dis-
crepancies between theory and experiment for selected
transition matrix elements. The error bars indicate the
experimental uncertainties, while markers show the dif-
ference between experiment and three recent theoretical
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FIG. 1. A graphical summary of the current status of the mea-
sured and calculated matrix elements 〈npJ ||r||ms1/2〉, where
m,n = 6 or 7, and J = 1/2 and 3/2 in atomic cesium. The
error bars show the magnitudes of the uncertainty of the mea-
surements. The data points show the deviation between the
most recent calculations of the matrix elements and the mea-
sured value. (Deviation > 0 indicates the theoretical value is
greater than the experimental value.) The calculated values
are from Refs. [34] (◦), [25, 28] (∗), and [4] (×).

works, including: Refs. [34] (◦), [25, 28] (∗), and [4] (×).
(Deviation > 0 indicates the theoretical value is greater
than the experimental value.) We observe that there is
good agreement between experiment and theory to the
∼ 0.2% level for most of these terms. All of the matrix
elements 〈ns1/2||r||mpJ〉 for n,m = 6, 7 have now been
measured to a precision of 0.16% or better, clearing the
way for a new determination of α, and serve as impor-
tant benchmarks for future atomic theory calculations of
kPNC .

Table I shows a term-by-term computation of the
scalar polarizability α following Eq. (1). In the second
and fifth columns, we list values of the E1 matrix el-
ements d = 〈7s1/2||r||npJ〉 and 〈npJ ||r||6s1/2〉, respec-
tively, for principal quantum number n. For n = 6 and
7, we have already discussed the values that we use. For
n = 8 − 12, we use theoretical values of these matrix
elements from Ref. [55]. The signs of these matrix ele-
ments are consistent with the sign convention described
in Refs. [53, 57]. In each case, the percentage uncertainty
of the matrix element δd is listed in columns 3 and 6. We
show in column nine the contribution of these elements
to the scalar polarizability, using the energy of npJ states
listed in the table [56]. We also show the uncertainties δα
resulting from δd in this table; δα due to the uncertainty
in 〈7s1/2||r||npJ〉 in column four and 〈npJ ||r||6s1/2〉 in
column seven, and the quadrature sum of these in the
final column.

The final contributions to α are from npJ states with

TABLE II. This table lists several determinations of β since
1997, and we have bolded the two highest precision deter-
minations. The previous value of β with the best precision
combines a measurement in 1999 by Bennett et al. of M1hf/β
and the calculation in 2000 of M1hf . The determinations la-
beled “Sum over states (α)” combine a calculation of α and
the high precision measurement of α/β [36]. In this table,
we have also listed our direct calculation of β through a sum-
over-states method, which has a large uncertainty due to can-
cellation of terms.

Year Authors Remarks β (a30)
2019 This work Sum over states (α) 27.139 (42)
2002 Dzu02 [28] Sum over states (α) 27.15 (11)
2002 Vas02 [35] Sum over states (α) 27.22 (11)
2000 Dzu00 [32] M1hf calculation 26.957 (51)
1999 Ben99 [33] M1hf/β expt 27.024 (80)
1999 Saf99 [34] Sum over states (α) 27.11 (22)
1999 Saf99 [34] Sum over states (β) 27.16
1997 Dzu97 [57] Sum over states (α) 27.15 (13)
1992 Blu92 [23] Sum over states (β) 27.0 (2)

n > 12, and valence-core contributions αvc. We calcu-
late the contributions from Hartree-Fock (HF) bound
state wavefunctions with n > 12 (bound and contin-
uum) with the aid of a B-spline basis set. The HF
value αn>12 = −0.45 a30 is obtained by subtracting the
sum for n = 1 to 12, in a term-by term HF calculation,
from the sum over the entire spline basis. Noting that
the HF values contributions to alpha for n = 8 to 12
are ∼30% too high compared with the precise theoret-
ical values from Ref. [55] listed in Table I, we estimate
αn>12 = −0.30 (15) a30. For the valence-core contribu-
tions, we determine αvc = +0.2 (1) a30, in agreement with
the value reported in [34, 35].

The final value for the scalar polarizability that we re-
port, α = −268.82 (30) a30 is the sum of all the contribu-
tions listed in column nine of the table. The uncertainty
δα = 0.30 a30 is the quadrature sum of the uncertainties
listed in the tenth column. Note that the primary uncer-
tainties now come from the uncertainties of the E1 ma-
trix elements 〈6s1/2||r||8p3/2〉 and 〈6s1/2||r||7p3/2〉, and
the tail contributions αn>12. Our calculated value of α
is in agreement with prior calculations of α using the
same sum-over-states method [23, 34, 35], but the 0.11%
precision of the current determination is a significant im-
provement.

From α, we use the measured value of α/β = 9.905 (11)
[36] to derive

β = 27.139 (42) a30. (2)

We list this result, along with previous determinations of
β in Table II, and show these data graphically in Fig. 2.
Our result is consistent with, but of higher precision than,
previous values determined using the sum-over-states ap-
proach. The previous best determination of β, shown in
bold font in Table II, comes from a calculation of the
hyperfine changing contribution to the magnetic dipole
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matrix element M1hf = 0.8074(8) × 10−5 µB/c [32],
thought to be accurate to 0.1%, and the measurement
of M1hf/β = −5.6195(91) V/cm [33]. This results in
β = 26.957 (51) a30. Our result differs from this value by
0.182 a30 (0.67%), which is larger than the sum of their
uncertainties 0.093 a30 (0.34%). The uncertainty in the
new value is slightly smaller than that of the previous
best value. Although β determined through the sum-
over-states approach has generally been larger than the
value determined through M1hf , as seen in Table II and
Fig. 2, uncertainties were previously too large for this to
be a concern.

We have also calculated β = 27.01 (23) a30 directly
from the E1 data displayed in Table I using the sum-over-
states expression in Eq. (40) of Ref. [23]. This value is in
agreement with Eq. (2), but with much larger uncertainty
due to significant cancellations between terms.

The new determination of the vector polarizability has
an important implication for Im(EPNC). The best mea-
surement of Im(EPNC) to date is the measurement in
1997 of

Im(EPNC)

β
= 1.5935(56) mV/cm (3)

by Wood et al. [20]. (In the following, we base our anal-
ysis solely on this value, rather than the 2005 measure-
ment of Im(EPNC)/β = 1.538(40) mV/cm by Guena et
al. [58].)

To extract the weak charge Qw of the cesium nu-
cleus from a measurement of Im(EPNC), we need theo-
retical calculations of the proportionality kPNC between
Im(EPNC) and Qw. Many-body calculations done by
[3, 4] determine

Im(EPNC) = 0.8906(24)× 10−11|e|a0 (−Qw/N) . (4)

The authors use the coupled-cluster method with full
single, double and valence triple excitations considered.

FIG. 2. A summary of the current status of β determinations.
The β values shown on the left (o) are determined through a
sum-over-states of α and the ratio α/β. The two values on
the right (x) are determined through an experimental deter-
mination of M1hf/β and a theory value of M1hf . Refer to
Table II for references to these values.

FIG. 3. A summary of the current status of Qw determina-
tions. The two horizontal lines denote the Standard Model
prediction Q2018

SM [59]. Past determinations are Vas02 [35],
Dzu02 [28], Fla05 [29], Por10 [4], Dzu12 [5].

They also accounted for Breit, quantum electrodynamics
(QED), and neutron skin corrections. The claimed 0.27%
uncertainty was obtained by comparison of calculations
of energies, electric dipole amplitudes and hyperfine con-
stants. Using Eq. (4) and our value of β results in

Qw = −73.66(28)e(20)t , (5)

where the experimental (e) and theoretical (t) uncer-
tainties are indicated separately. This value of the
weak charge is ∼ 1.2 σ larger than the standard model
value [59]

Q2018
SM = −73.23(1). (6)

Dzuba et al. [5, 30] introduced corrections to the core
and tail contributions to Im(EPNC) in Refs. [3, 4] and
determined

Im(EPNC) = 0.8977(40)× 10−11|e|a0 (−Qw/N) , (7)

in disagreement with Eq. (4), but in excellent agreement
with their earlier results [28, 29]. Combining Eq. (7) with
our value of β results in the value of

Qw = −73.07(28)e(33)t, (8)

∼ 0.3 σ less than Q2018
SM .

We show in Fig. 3 the various determinations of Qw

since 2002 [3–5, 28, 29, 35]. The datapoint labeled Q2018
SM

and the two horizontal lines denote the Standard Model
prediction and its uncertainty [59]. We note plans to
resolve the differences between Eqs. (4) and (7) through
a unified calculation of all contributions (principal, tail,
and core) to Im(EPNC) [31].

In conclusion, we report a new, high-precision deter-
mination of the scalar (α) and vector (β) polarizabilities
of the cesium 6s → 7s transition. This was achieved
using precise values of E1 matrix elements between the
lowest energy levels of cesium, which we determined from
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a combination of measurements and calculations. From
that, we report new values for the weak charge of the
cesium nucleus Qw. Our new value of β shows a signifi-
cant discrepancy with β determined through M1hf [32],
which calls for new calculations and/or measurements
to address this issue. We note that any further improve-
ment to the determination of α will require high precision
measurements of a few key E1 matrix elements identified
above, or alternatively, a direct laboratory determination
of α. Furthermore, any improvement to the value of β
as determined through the method described here will
require a new laboratory measurement of α/β, since the
uncertainty of the current value of this ratio is of magni-
tude comparable to that of α.

This material is based upon work supported by the
National Science Foundation under Grant Number PHY-
1460899.
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