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We propose a method for optical interferometry in telescope arrays assisted by quantum networks.
In our approach, the quantum state of incoming photons along with an arrival time index is stored
in a binary qubit code at each receiver. Nonlocal retrieval of the quantum state via entanglement-
assisted parity checks at the expected photon arrival rate allows for direct extraction of phase dif-
ference, effectively circumventing transmission losses between nodes. Compared to prior proposals,
our scheme, based on efficient quantum data compression, offers an exponential decrease in required
entanglement bandwidth. Experimental implementation is then feasible with near-term technology,
enabling optical imaging of astronomical objects akin to well-established radio interferometers and
pushing resolution beyond what is practically achievable classically.

High-resolution imaging using large telescope arrays
is by now a well-established technique in the microwave
and radio-frequency domains [1, 2]. While extending to
the optical domain may offer substantial advantages in
terms of resolution [3, 4], this task is extremely challeng-
ing in practice. The requirement of interferometric stabi-
lization at optical wavelengths and the weakness of light
sources in this domain have precluded the widespread
adoption of optical telescope arrays [5]. Notably, the
weaker light intensities make phase-sensitive heterodyne
detection infeasible due to vacuum fluctuations [6] and
high-resolution optical telescopes are therefore operated
by directly interfering the collected light [7]. Then, size
of the array and consequently resolution is ultimately
limited by transmission losses between telescope sites.

In this Letter, we propose a new approach to overcome
these limitations with networks [8] of quantum memories
connected via entanglement. Specifically, we describe a
scheme for efficiently determining the optical phase dif-
ference between two widely separated receivers. Each
detector runs a “quantum shift register” storing incident
photon states at a rate that is matched to the inverse
detection bandwidth. Then, at the anticipated mean
photon arrival rate, the memories are interrogated with
entangled pairs to provide information akin to that ob-
tained from a radio interferometer. Employing quantum
repeater techniques [9], this approach completely circum-
vents transmission losses. The resulting increase in base-
line to arbitrarily large distances potentially allows for
substantial enhancement in imaging resolution [4].

Before proceeding, we note that the use of entangle-
ment to connect remote telescope sites has been proposed
previously, by means of postselected quantum teleporta-
tion of incident optical photons [10]. The key limitation
of this visionary proposal is the requirement of an exces-
sive amount of distributed entangled pairs. They must
be supplied at a rate similar to the spectral bandwidth of
the optical telescope, which is currently not feasible. In
the relevant case of weak sources, such that incident pho-
tons are rare, the use of quantum memories circumvents

FIG. 1. Overview of basic operation. Light from a distant
source is collected at two sites and stored in quantum mem-
ory over time bins digitized by detector bandwidth. Both the
quantum state and the arrival time of an incident photon are
encoded in a binary qubit code. For example, if the photon
arrives in the 5th time bin, corresponding to the binary repre-
sentation 101, we store it in a quantum state with flipped first
and third qubits at each node. Decoding of the arrival time
is accomplished by nonlocal parity checks assisted by entan-
gled pairs, projecting the memories onto a known entangled
state. The phase information can then be extracted without
directly interfering the signal from the two memories, thus
circumventing transmission losses. Network resources scale
only logarithmically with source intensity ε.

this requirement. Under distributed compression, the in-
coming light is efficiently processed using only ∼log2(1/ε)
memory qubits and entangled pairs, where ε � 1 is the
mean photon number. Then, the entire loss-free interfer-
ometric operation can be realized with modest quantum
nodes consisting of about 20 qubits and distributed en-
tanglement rate in the 200 kHz range. Our proposal re-
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alizes an effective event-ready scheme, avoiding wasteful
expenditure of entanglement for vacuum events.

In our protocol, illustrated in Fig. 1, incoming light is
stored by flipping stationary quantum bit memories [11]
at each telescope site. The storage procedure operates
over a time interval set by the detector bandwidth. Mul-
tiple qubits are needed to record a photon spread over
many time bins. We assume that the light is weak such
that most time bins contain vacuum. Consider, first, a
unary encoding with one memory qubit for each time
bin. After the single photon is stored, the memories are
in a superposition between one site having the excita-
tion versus the other: e.g., (|000010 . . .〉A |000000 . . .〉B +

eiθ |000000 . . .〉A |000010 . . .〉B)/
√

2, where the memory
register corresponds to time bin. The goal of the in-
terferometer is to extract the relative phase θ. To de-
termine which memory qubits to use for interferometry
without collapsing the superposition, the parity of par-
allel memory registers can be checked with an entan-
gled state per register. Introducing Bell pairs (|φ±〉 =
(|0, 0〉 ± |1, 1〉)/

√
2, where |i〉A |j〉B ≡ |i, j〉), controlled

phase (CZ) gates between the memory qubits on either
side and the entangled pairs have the following effect:

(|0, 0〉 , |1, 1〉)
∣∣φ+〉 2×CZ−−−−→ (|0, 0〉 , |1, 1〉)

∣∣φ+〉 , (1)

(|0, 1〉 , |1, 0〉)
∣∣φ+〉 2×CZ−−−−→ (|0, 1〉 , |1, 0〉)

∣∣φ−〉 . (2)

A measurement in the X basis (projecting on the states
|±〉 = (|0〉 ± |1〉)/

√
2) of each qubit in the Bell pair then

reveals their parity, from which we can infer arrival time,
since the odd-parity register is the one containing the
excitation. Its relative phase can be subsequently ex-
tracted, e.g., via measurement of one of the qubits in the
X basis and the other in a rotated basis to interfere the
phase. Similar to a prior scheme [10], the unary code
requires one entangled pair for each time bin, implying
large consumption for practical bandwidth.

Encoding in binary accomplishes the same task but
with a logarithmic scaling of resources. We exploit that
only one photon arrives over M ∼ 1/ε time bins; i.e.,
we only have to store one logical qubit per block. La-
bel each time bin m ∈ Z+ with its binary represen-
tation m2, and define logical qubits |0̄〉 ≡ |0 . . . 0〉 and
|1̄m〉 ≡ |m2〉. For example, the 5th time bin is encoded
as |1̄5〉 = |1010...0〉, formed from physical qubits at one
site. Generally, log2(M + 1) bits are needed to losslessly
encode M possible arrival times plus the vacuum. This
encoding is performed by a logical controlled not (CX)
gate, which is a product of physical CX gates between the
control photonic qubit and target memory qubits speci-
fied by the binary representation:

|0〉 (|0̄〉 , |1̄j〉)
CXm−−−→ |0〉 (|0̄〉 , |1̄j〉) , (3)

|1〉 (|0̄〉 , |1̄j〉)
CXm−−−→ |1〉 (|1̄m〉 , |1̄j + 1̄m〉) . (4)

This encoding keeps track of the arrival time of one pho-

ton: empty time bins leave the memories unchanged,
whereas only the time bin that does contain a photon
maps into the quantum memory via the binary code.
Decoupling the photonic qubit through an X-basis mea-
surement completes the encoding step, but imparts a con-
ditional phase associated with each time bin [12]. This
phase must be corrected, requiring knowledge of the time
bin when the photon did arrive. The arrival time can
be decoded while preserving spatial coherence by apply-
ing nonlocal parity checks on qubit pairs in the same
register, analogously to the case of unary encoding de-
scribed earlier. For example, if the photon arrived in the
5th time bin, the Bell pairs would be found in the state
|φ−〉 |φ+〉 |φ−〉 |φ+〉 . . . |φ+〉. Since there are log2(M + 1)
qubits per memory, also log2(M + 1) pre-established en-
tangled pairs are consumed.

Besides identifying the photon arrival time, the par-
ity checks project out the vacuum component of the
state. Modeling the astronomical object as a weak ther-
mal source [13, 14], the light arriving in each time bin is
described by a density matrix [6]

ρAB = (1− ε)ρvac +
ε(1 + |g|)

2

∣∣ψ+
θ

〉 〈
ψ+
θ

∣∣
+
ε(1− |g|)

2

∣∣ψ−
θ

〉 〈
ψ−
θ

∣∣ +O(ε2) , (5)

to first order in ε, where
∣∣ψ±
θ

〉
= (|0, 1〉 ± eiθ |1, 0〉)/

√
2

and ρvac = |0, 0〉 〈0, 0| in the photon-number basis. The
first-order spatial coherence g = |g|eiθ, also known as the
visibility, generally has amplitude |g| ≤ 1. The nonlocal
parity checks project onto the logical qubit states. Af-
ter acting on M ∼ 1/ε samples of ρAB , the memories
likely contain one logical excitation. This postselection
via measurement leads to efficient error accumulation, as
elaborated below. The visibility g can then be extracted
through a logical measurement, similar to the case of
unary encoding discussed above [12].

Specifically, for the example of a photon being detected
in the 5th time bin, the memory ends up in the following
entangled state up to a known phase flip from the state
transfer operation:

(1± |g|)
2

∣∣ψ̄+
θ

〉 〈
ψ̄+
θ

∣∣ +
(1∓ |g|)

2

∣∣ψ̄−
θ

〉 〈
ψ̄−
θ

∣∣ , (6)

where
∣∣ψ̄±
θ

〉
= (|0̄, 1̄5〉 ± eiθ |1̄5, 0̄〉)/

√
2, which has four

entangled physical qubits (|00, 11〉±eiθ |11, 00〉)/
√

2. The
other, even-parity qubits are in the |0〉 state and can be
traced out. After measuring the first three of the four
entangled qubits in the X basis, the remaining qubit is
in the state

1

2
(|0〉 〈0|+ |1〉 〈1|+ (−1)n−(g |0〉 〈1|+ h.c.)) , (7)

where n− is the number of |−〉 outcomes from the X-basis
measurements. Assume n− = 0 for simplicity. Applying
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a phase shift Uδ = |0〉 〈0| + eiδ |1〉 〈1| and measuring the
qubit in the X basis will have outcome |±〉 with prob-
ability (1 ± Re(ge−iδ))/2. The visibility g can then be
extracted by sweeping over δ, repeating the above proce-
dure for many photons.

Physically, our scheme can be implemented with long-
lived atomic ground states in, e.g., Rb atoms [15], using
solid-state qubits with an optical interface, such as SiV
defect centers in diamond [16–18], or with spin qubits
in quantum dots [19], which have fast control. Optical
cavities ensure strong light-matter interaction [20], po-
tentially matched via quantum frequency conversion [21].
Absorption of the photon by an auxiliary atom in a Ra-
man setup [22, 23] enables easy X-basis measurement,
with the same atom reused for every optical mode. Main-
taining a stable phase at the level specified by detector
bandwidth can be accomplished with a reference laser,
as done in atomic clocks [24]. Logical CX gates between
the auxiliary atom and the memory atoms could be re-
alized as cavity-mediated [25] or Rydberg gates [26]. Al-
ternative schemes involve photon-atom gates [11, 27] and
photon detection, eliminating the auxiliary atom [21].

The dominant errors in our protocol will arguably orig-
inate from the two-qubit gates. Note, however, that all
time bins except the one containing the photon will result
in trivial CX gates where the control qubit is in state |0〉.
The trivial action of the CX should have an error rate
less than ε(log2 1/ε)−1 to preserve the memory. A num-
ber of gate schemes satisfy this criterion [12]; for example,
in photon-atom gates, the absence of a photon does not
affect the atom. We therefore assume that only the non-
trivial CX operations lead to significant errors. We also
consider higher-order corrections to the photonic den-
sity matrix in Eq. (5), which introduce multiple-photon
events leading to undetectable errors in the binary code.

The performance of our scheme is analyzed using the
Fisher information, quantifying how much information
about a given parameter can be extracted through mea-
surement on a quantum state [28]. In our case, we wish
to estimate the visibility g = g1 + ig2, where g1, g2 are
two real parameters, so the Fisher information becomes a
matrix. Taking the trace norm, ‖F‖ quantifies the total
obtainable information about g: 1/‖F‖ has the opera-
tional interpretation of constraining the variance of the
measured data [29]. Ideal nonlocal and local schemes op-
erating on the state of Eq. (5) are separated by ‖F‖ ≥Mε
and ‖F‖ ≤ Mε2, respectively [6]. Intuitively, the non-
local bound corresponds to the probability of detecting
a photon from a source of intensity ε, whereas the local
bound is a factor of ε worse due to the inability to discrim-
inate against the vacuum component of the state. Thus,
the Fisher information explicitly demonstrates how non-
local schemes like ours are superior to local schemes like
heterodyne detection for measuring weak thermal light,
as found in the optical domain.

Incorporating errors and operating over M time bins,
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FIG. 2. Minimum number of Bell pairs needed to attain
‖F‖ ≥ 1, corresponding to variance . 1 in estimating the
visibility g, as a function of source intensity ε. We consider
errors in the coding operations parametrized by decreasing ν,
as detailed in the main text. Ideally (ν = 1), M ∼ 1/ε time
bins are encoded per block and read out with log2(M + 1)
entangled pairs. For sufficiently large errors (ν = 0.6), the
encoding fails and memoryless operation with readout of ev-
ery time bin is recovered, similar to the scheme of Ref. [10].

we find the following norm of the Fisher information,
bounded from below [12]:

‖F‖ ≥ (Mε)2

[(1 + ε)M − 1](1 + ε)M+2
µ2νlog2(M+1) ≡ ‖F‖min ,

(8)
where µ ≡ pt(2ft − 1)2(2f1 − 1)2 contains the error in
mapping the photonic state to memory at one site, in
terms of success probability pt and fidelity ft of the light-
memory transfer and fidelity of one-qubit measurement
f1, and ν ≡ (2f1−1)4(2f2−1)4(2fe−1) contains the er-
ror of memory encoding/decoding and readout in terms
of the fidelities of one-qubit measurements f1, nontrivial
two-qubit gates f2, and pre-shared entanglement fe. The
success probability includes photon loss, which effectively
increases the vacuum component of the state. Other er-
rors are not detectable and modeled as depolarizing chan-
nels as a worst-case scenario. Note that ‖F‖min ∼Mε for
small ε, as expected for a nonlocal scheme. Larger M im-
proves the probability of receiving the signal of a single
photon and hence ‖F‖min initially increases, but even-
tually a maximum is reached due to competition from
multiple-photon events and imperfect quantum opera-
tions. Therefore, the scheme can be optimized with re-
spect to M , operating with the minimum entanglement
expenditure needed to extract the information content of
one photon, ‖F‖min ≥ 1 (see Fig. 2). In the ideal case
(ν = 1), the number of entangled pairs is logarithmic
in 1/ε, the number of time bins operated over so that
roughly one photon arrives, on average. Information-
theoretic arguments, based on the conditional entropy of
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the state described by Eq. (5), predict a bound with the
same scaling, within a constant prefactor [12]. When er-
rors are sufficiently large (ν ≈ 60%), the memories are
read out after a single time bin. Thus, an effective mem-
oryless scheme similar to that of Ref. [10] is recovered,
with entanglement consumption scaling as 1/ε [30].

Assuming an effective detection bandwidth δf = 10
GHz, a total area of photon collection of 10 m2, and
imaging in the V band (centered around 555 nm), we can
estimate the resources needed for a star of magnitude 10
(corresponding to ε = 7×10−7), which is around the limit
of the CHARA optical interferometric array [31]. Our
ideal, optimized scheme requires ∼log2 1/ε ∼ 20 memory
qubits per site and an entanglement distribution rate of
∼δf ε log2 1/ε ∼ 200 kHz [32]. The improvement over the
rate necessary for a memoryless scheme [10] with the 10
GHz effective bandwidth is a factor of 5×104. Extending
the current limit of 330 m baseline of CHARA [33] to re-
alistic quantum network scales greater than 10 km would
increase resolution from the mas to the µas regime [12].
Finally, we note that the bandwidth of direct interfer-
ometers can in practice be adjusted to enhance signal
strength at the expense of resolution [33]. While the
present method is limited by the bandwidth of quantum
memory, our approach readily extends to broadband op-
eration, as discussed in Ref. [21].

Turning to possible implementations of these ideas, we
note that the chosen detector bandwidth (10 GHz) sets
the timescale of the encoding operation and the photon
arrival rate (1 kHz) determines the memory coherence
time. In Table I of the Supplement [12], we compare the
capabilities of various physical realizations. Among the
most promising candidates are SiV centers in diamond,
striking a balance with gate time on the order of ns and
ms-scale coherence. Techniques such as parallelization,
repeated readout, and photon detection [21] improve per-
formance with a modest overhead in resources. Further-
more, we emphasize that our scheme performs well in the
presence of noise, which ultimately reduces the interfer-
ence, as seen in Fig. 2. Therefore, it is amenable to exper-
imental testing and development of Noisy Intermediate-
Scale Quantum devices. Demonstrating kHz-scale en-
tanglement generation between remote quantum memo-
ries, high-fidelity light-matter interfaces, and addressing
of multiple qubits at network nodes would facilitate the
realization of our proposal.

In order to image a broad object, telescope arrays con-
sisting of N > 2 sites are used to sample the visibility
g(x) across N − 1 points between x = 0 and x = b (b is
the baseline, or maximum length). According to the Van
Cittert-Zernike theorem [34], a Fourier transform yields
an estimate of the stellar intensity distribution I(φ). To
operate in this manner, our network protocol general-
izes to N > 2 nodes. Under conditions when at most
one photon is incident on the telescope array, at each
site we encode the optical modes in a binary code, as in

FIG. 3. Generalization to N > 2 sites in the telescope ar-
ray. Decoding with a W state collapses the network state to
two nodes, and the protocol continues as before. The visibil-
ity data is stored in a classical memory until enough events
have accumulated to perform a Fourier transform. Using GHZ
states instead preserves coherence across the network. Quan-
tum teleporting the memories to one site for convenience, a
quantum Fourier transform is applied, yielding the desired
intensity distribution directly as the probabilities of measure-
ment outcomes.

the two-node case. The nonlocal parity checks are per-
formed using either N -qubit GHZ states, preserving co-
herence across the entire array, or with W states, collaps-
ing the operation into pairwise readout [21]. While a clas-
sical Fourier transform of extracted pairwise visibilities
may be performed, the GHZ approach enables a quan-
tum Fourier transform directly on the stored quantum
state (see Fig. 3). Coherent processing of the visibilities
in the latter case results in an additional improvement in
the signal-to-noise ratio, since the noise associated with
pairwise measurements is avoided. The exact improve-
ment depends on the nature of the source distribution,
but can be on the order of

√
N [21].

In conclusion, we have proposed a protocol for per-
forming nonlocal interferometry over a quantum net-
work, relevant for astronomical imaging. By encoding
the quantum state of the incoming photons into mem-
ory, we realize an effective “event-ready” scheme with
efficient entanglement expenditure. The nonlocality is vi-
tal for removing vacuum noise in imaging weak thermal
light, and distributed entanglement circumvents trans-
mission losses. Hence, our scheme enables near-term
quantum networks to serve as a platform for powerful
optical interferometers, demonstrably superior to what
can be achieved classically. Furthermore, quantum algo-
rithms can be used to process the stored signals such that
the stellar intensity distribution can be inferred with a
further improvement in the signal-to-noise ratio.
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While we focused on addressing fundamental limita-
tions, real-world interferometry suffers from many other
practical challenges such as stabilization and atmospheric
phase fluctuations [5], which we address in Table II of the
Supplement [12]. For example, in Earth-based systems,
atmospheric distortion can be tackled via a combination
of adaptive optics and fringe-tracking. Such techniques
are already being deployed in smaller-scale astronomical
interferometers [3] and are fully compatible with our pro-
posal. Moreover, these challenges and control methods
do not scale unfavorably with the baseline beyond certain
physical correlation lengths [5], such that the construc-
tion of very large telescope arrays may be envisioned.
Alternatively, space-based implementation avoids many
of these technical issues, potentially extending over the
104 km scale [35] using entanglement distributed by satel-
lites [36]. Since the astronomical origin of the weak ther-
mal light is not crucial, such networks could also be ap-
plied to terrestrial imaging.

We thank A. Aspuru-Guzik, M. Bhaskar, F. Brandão,
M. Christandl, I. Chuang, I. Cirac, J. Stark, C. Stubbs,
H. Zhou, and P. Zoller for illuminating discussions and
useful comments. This work was supported by the
National Science Foundation, the Center for Ultracold
Atoms, the NSF Graduate Research Fellowship (E.T.K.),
the Vannevar Bush Faculty Fellowship, ERC Grant
Agreement no 337603, the Danish Council for Indepen-
dent Research (Sapere Aude), Qubiz – Quantum Inno-
vation Center, and VILLUM FONDEN via the QMATH
Centre of Excellence (Grant No. 10059).

[1] A. R. Thompson, in Synthesis Imaging in Radio Astron-
omy II , Astronomical Society of the Pacific Conference
Series, Vol. 180, edited by G. B. Taylor, C. L. Carilli,
and R. A. Perley (1999) p. 11.

[2] K. I. Kellermann and J. M. Moran, Annual Review of
Astronomy and Astrophysics 39, 457 (2001).

[3] P. Stee, F. Allard, M. Benisty, L. Bigot, N. Blind, H. Bof-
fin, M. Borges Fernandes, A. Carciofi, A. Chiavassa,
O. Creevey, P. Cruzalebes, W.-J. de Wit, A. Domi-
ciano de Souza, M. Elvis, N. Fabas, D. Faes, A. Gal-
lenne, C. Guerrero Pena, M. Hillen, S. Hoenig, M. Ire-
land, P. Kervella, M. Kishimoto, N. Kostogryz, S. Kraus,
A. Labeyrie, J.-B. Le Bouquin, A. Lebre, R. Ligi, A. Mar-
coni, T. Marsh, A. Meilland, F. Millour, J. Monnier,
D. Mourard, N. Nardetto, K. Ohnaka, C. Paladini,
K. Perraut, G. Perrin, P. Petit, R. Petrov, S. Rak-
shit, G. Schaefer, J. Schneider, D. Shulyak, M. Simon,
F. Soulez, D. Steeghs, I. Tallon-Bosc, M. Tallon, T. ten
Brummelaar, E. Thiebaut, F. Thévenin, H. Van Winckel,
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