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Resource theories in quantum information science are helpful for the study and quantification of the per-
formance of information-processing tasks that involve quantum systems. These resource theories also find
applications in other areas of study; e.g., the resource theories of entanglement and coherence have found use
and implications in the study of quantum thermodynamics and memory effects in quantum dynamics. In this
paper, we introduce the resource theory of unextendibility, which is associated to the inability of extending
quantum entanglement in a given quantum state to multiple parties. The free states in this resource theory are
the k-extendible states, and the free channels are k-extendible channels, which preserve the class of k-extendible
states. We make use of this resource theory to derive non-asymptotic, upper bounds on the rate at which quan-
tum communication or entanglement preservation is possible by utilizing an arbitrary quantum channel a finite
number of times, along with the assistance of k-extendible channels at no cost. We then show that the bounds
obtained are significantly tighter than previously known bounds for quantum communication over both the de-
polarizing and erasure channels.

Introduction—Recent years have seen progress in the de-
velopment of programmable quantum computers and infor-
mation processing devices; several groups are actively devel-
oping superconducting quantum processors [1] and satellite-
to-ground quantum key distribution [2]. It is thus pertinent
to establish benchmarks on the information-processing capa-
bilities of quantum devices that are able to process a finite
number of qubits reliably. Experimentalists can then employ
these benchmarks to evaluate how far they are from achieving
the fundamental limitations on performance.

In this paper, we first develop a resource theory of un-
extendibility and then apply it to bound the performance of
quantum processors. In particular, the resource theory of un-
extendibility leads to non-asymptotic upper bounds on the rate
at which entanglement can be preserved when using a given
quantum channel a finite number of times. We then apply this
general bound to depolarizing and erasure channels, which are
common models of noise in quantum processors. For these
channels, we find that our bounds are significantly tighter than
previously known non-asymptotic bounds from [3, 4].

The resource theory of unextendibility can be understood
as a relaxation of the well known resource theory of entan-
glement [5, 6], and it is a relaxation alternative to the re-
source theory of negative partial transpose states from [7, 8],
in which the free states are the positive partial transpose (PPT)
states and the free channels are completely PPT-preserving
channels. In the resource theory of entanglement, the free
states are the separable states, those not having any entan-
glement at all. Any separable state σAB can be written as
σAB =

∑
x p(x)τxA ⊗ ωxB , where p(x) is a probability distri-

bution and {τxA}x and {ωxB}x are sets of states; the free chan-
nels are those that can be performed by local operations and
classical communication (LOCC) [5, 9]. An LOCC channel
LAB→A′B′ is a separable super-operator (although the con-
verse is not true), and can hence be written as LAB→A′B′ =∑
y E

y
A→A′ ⊗ F

y
B→B′ , where {EyA→A′}y and {FyB→B′}y are

sets of completely positive (CP) maps such that LAB→A′B′
is trace preserving. A special kind of LOCC channel is a
one-way (1W-) LOCC channel from A to B, in which Al-
ice performs a quantum instrument, sends the classical out-
come to Bob, who then performs a quantum channel condi-
tioned on the classical outcome received from Alice. As such,
any 1W-LOCC channel takes the form stated above, except
that {EyA→A′}y is a set of CP maps such that the sum map∑
y E

y
A→A′ is trace preserving, while {FyB→B′}y is a set of

quantum channels.
The set of free states in the resource theory of unextendibil-

ity is larger than the set of free states in the resource theory
of entanglement. By relaxing the resource theory of entangle-
ment in this way, we obtain tighter, non-asymptotic bounds on
the entanglement transmission rates of a quantum channel.

Before we begin with our development, we note here that
detailed proofs of all statements that follow are given in our
companion paper [10].

Resource theory of unextendibility—In the resource theory
of unextendibility, there is implicitly a positive integer k ≥ 2,
with respect to which the theory is defined. The free states
in this resource theory are the k-extendible states [11–13], a
prominent notion in quantum information and entanglement
theory that we recall now. For a positive integer k ≥ 2, a
bipartite state ρAB is k-extendible with respect to system B if

1. (State Extension) There exists a state ωAB1···Bk
that ex-

tends ρAB , so that TrB2···Bk
{ωAB1···Bk

} = ρAB , with sys-
tems B1 through Bk each isomorphic to system B of ρAB .

2. (Permutation Invariance) The extension state ωAB1···Bk

is invariant with respect to permutations of the B systems,
in the sense that ωAB1···Bk

= Wπ
B1···Bk

ωAB1···Bk
Wπ†
B1···Bk

,
where Wπ

B1···Bk
is a unitary representation of the permutation

π ∈ Sk, with Sk denoting the symmetric group.

To give some physical context to the definition of a k-
extendible state, suppose that Alice and Bob share a bipartite
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state and that Bob subsequently mixes his system and the vac-
uum state at a 50:50 beamsplitter. Then the resulting state of
Alice’s system and one of the outputs of the beamsplitter is a
two-extendible state by construction. As a generalization of
this, suppose that Bob sends his system through theN -splitter
of [14, Eq. (10)], with the other input ports set to the vacuum
state. Then the state of Alice’s system and one of the outputs
of the N -splitter is N -extendible by construction. One could
also physically realize k-extendible states in a similar way by
means of approximate quantum cloning machines [15].

It is worthwhile to mention that there are free states in the
resource theory of unextendibility that are not free in the re-
source theory of entanglement. For example, if we send one
share of the maximally entangled state ΦAB through a 50%
erasure channel [16], then the resulting state 1

2 (ΦAB+IA/2⊗
|e〉〈e|B) is a two-extendible state, and is thus free in the re-
source theory of unextendibility for k = 2. However, this
state has distillable entanglement via LOCC [17], and so it is
not free in the resource theory of entanglement.

Let EXTk(A;B) denote the set of k-extendible states,
where with this notation and as above, we take it as implicit
that the system B is being extended. The k-extendible states
are a relaxation of the set of separable (unentangled) states, in
the sense that a separable state is k-extendible for any positive
integer k ≥ 2. Furthermore, if a state ρAB is entangled, then
there exists some k for which ρAB is not k-extendible, and
ρAB is not `-extendible for all ` ≥ k [12, 13].

We define the free channels in the resource theory of unex-
tendibility to be bipartite channels that satisfy two constraints
generalizing those given above for the free states. Recall that
a bipartite channel NAB→A′B′ has two input systems A and
B and two output systems A′ and B′. The systems A and A′

are held by a single party Alice, and the systems B and B′

are held by another party Bob. It could be the case that any
of these systems encompass a number of smaller subsystems,
and we make use of this in what follows. We define a bipartite
channel NAB→A′B′ to be k-extendible if

1. (Channel Extension) There exists a quantum channel
MAB1···Bk→A′B′1···B′k that extends NAB→A′B′ , in the sense
that the following equality holds for all quantum states
θAB1···Bk

: TrB′2···B′k{MAB1···Bk→A′B′1···B′k(θAB1···Bk
)} =

NAB→A′B′(θAB1
), withB1 · · ·Bk each isomorphic toB, and

B′1 · · ·B′k each isomorphic to B′.

2. (Permutation Covariance) The extension channel
MAB1···Bk→A′B′1···B′k is covariant with respect to permuta-
tions of the input B and output B′ systems, in the sense that
the following equality holds for all quantum states θAB1···Bk

:
MAB1···Bk→A′B′1···B′k(Wπ

B1···Bk
θAB1···Bk

Wπ†
B1···Bk

) =

Wπ
B′1···B′k

MAB1···Bk→A′B′1···B′k(θAB1···Bk
)Wπ†

B′1···B′k
, where

Wπ
B1···Bk

and Wπ
B′1···B′k

are unitary representations of the
permutation π ∈ Sk.

The first condition above can be understood as a no-signaling
condition. That is, it implies that it is impossible for the par-
ties controlling the B2 · · ·Bk systems to communicate to the
parties holding systems A′B′1.

We advocate that our definition above is a natural channel
generalization of state extendibility, since the reduced channel
NAB→A′B′ of the channel extension MAB1···Bk→A′B′1···B′k
is defined in an unambiguous way only when we impose a
no-signaling constraint. Furthermore, the above definition is
quite natural in the resource theory of unextendibility devel-
oped here, as evidenced by the following theorem:

Theorem 1 Let ρAB ∈ EXTk(A;B), and let NAB→A′B′
be a k-extendible channel. Then the output state
NAB→A′B′(ρAB) is k-extendible.

The above theorem is fundamental for the resource theory
of unextendibility, indicating that the k-extendible channels
are free, as they preserve the free states.

There are several interesting classes of k-extendible chan-
nels that we can consider. Even if it might seem trivial, we
should mention that a particular kind of k-extendible channel
is in fact a k-extendible state, in which the input systems A
and B are trivial. Thus, k-extendible channels can generate
k-extendible states.

Any 1W-LOCC channel is k-extendible for all k ≥ 2, simi-
lar to the way in which any separable state is k-extendible for
all k ≥ 2. Thus, a 1W-LOCC channel is free in the resource
theory of unextendibility. The fact that a 1W-LOCC channel
takes a k-extendible input state to a k-extendible output state
had already been observed for the special case k = 2 in [18].

Quantifying unextendibility—In any resource theory, it is
pertinent to quantify the resourcefulness of the resource states
and channels. It is desirable for any quantifier to be non-
negative, attain its minimum for the free states and channels,
and be monotone under the action of a free channel [19]. With
this in mind, we define the k-unextendible generalized diver-
gence of an arbitrary density operator ρAB as follows:

Ek(A;B)ρ = inf
σAB∈EXTk(A;B)

D(ρAB‖σAB), (1)

where D(ρ‖σ) denotes a generalized divergence [20, 21],
which is any quantifier of the distinguishability of states ρ and
σ that is monotone under the action of a quantum channel.
Special cases of the quantifier in (1) were previously defined
in [18, 22] (relative entropy to two-extendible states and to k-
extendible states, respectively), [23] (best two-extendible ap-
proximation, related to max-relative entropy of unextendibil-
ity defined here), and [24] (maximum k-extendible fidelity).

Particular examples of generalized divergences between
states ρ and σ are the ε-hypothesis-testing divergence
Dε
h(ρ‖σ) [25, 26], and the max-relative entropy Dmax(ρ‖σ)

[27, 28], where for ε ∈ [0, 1],

Dε
h(ρ‖σ) := − log2 inf

Λ∈[0,I]
{Tr{Λσ} : Tr{Λρ} ≥ 1− ε},

and Dmax(ρ‖σ) := inf{λ : ρ ≤ 2λσ} in the case that
supp(ρ) ⊆ supp(σ), and otherwise Dmax(ρ‖σ) = +∞.

Information-processing tasks—Now that we have estab-
lished the free states and channels in the resource theory of
unextendibility, we are ready to discuss tasks that can be per-
formed in it. We consider two main tasks here: entanglement
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distillation and quantum communication with the assistance
of k-extendible channels. The goal of these protocols is to use
many copies of a bipartite state or many invocations of a quan-
tum channel, along with the free assistance of k-extendible
channels, in order to generate a high-fidelity maximally en-
tangled state with as much entanglement as possible. This
kind of task was defined and developed in [29], albeit with
the assistance of a particular kind of k-extendible channel and
only the case k = 2 was considered there, generalizing the
usual notion of entanglement distillation and quantum com-
munication protocols from [5, 30–36].

Let n,M ∈ Z+ and ε ∈ [0, 1]. Let ρAB be a bipartite
state. An (n,M, ε) entanglement distillation protocol assisted
by k-extendible channels begins with Alice and Bob sharing
n copies of ρAB , to which they apply a k-extendible channel
KAnBn→MAMB

, where it is understood that this is a bipartite
channel with Alice possessing systems An and MA and Bob
possessing systems Bn and MB . The resulting state satisfies
the following performance condition:

F (KAnBn→MAMB
(ρ⊗nAB),ΦMAMB

) ≥ 1− ε, (2)

where ΦMAMB
:= 1

M

∑
m,m′ |m〉〈m′|MA

⊗ |m〉〈m′|MB
is a

maximally entangled state of Schmidt rankM and F (ω, τ) :=

‖
√
ω
√
τ‖21 is the quantum fidelity [37]. Let D(k)(ρAB , n, ε)

denote the non-asymptotic distillable entanglement with the
assistance of k-extendible channels; i.e., D(k)(ρAB , n, ε) is
equal to the maximum value of 1

n log2M such that there exists
an (n,M, ε) protocol for ρAB satisfying (2).

We define two different variations of quantum communica-
tion, with one simpler and one more involved. LetNA→B de-
note a quantum channel. In the simpler version, an (n,M, ε)
entanglement transmission protocol assisted by a k-extendible
post-processing begins with Alice preparing a maximally en-
tangled state ΦRA′ of Schmidt rankM . She applies a quantum
channel EA′→An , which serves as an encoding and leads to a
state ρRAn := EA′→An(ΦRA′). She transmits the systems
An := A1 · · ·An using the channel N⊗nA→B . Alice and Bob
then perform a k-extendible channelKRBn→MAMB

, such that

F (KRBn→MAMB
(N⊗nA→B(ρRAn)),ΦMAMB

) ≥ 1− ε. (3)

Let Q(k)
I (NA→B , n, ε) denote the non-asymptotic quantum

capacity assisted by a k-extendible post-processing; i.e.,
Q

(k)
I (NA→B , n, ε) is the maximum value of 1

n log2M such
that there exists an (n,M, ε) protocol for NA→B satisfy-
ing (3).

For the cases of entanglement distillation and the simpler
version of entanglement transmission, note that an (n,M, ε)
entanglement distillation protocol for the state ρAB is a
(1,M, ε) protocol for the state ρ⊗nAB and vice versa. Simi-
larly, an (n,M, ε) entanglement transmission protocol for the
channelNA→B is a (1,M, ε) protocol for the channelN⊗nA→B
and vice versa.

In the more involved version of entanglement transmission,
every channel use is interleaved with a k-extendible channel,
similar to the protocols considered in [38–40]. Specifically,
the protocol is a special case of one discussed in [40] for gen-
eral resource theories. We do not discuss these protocols in

detail here, but we simply note that, for an (n,M, ε) quan-
tum communication protocol assisted by k-extendible chan-
nels, the performance criterion is that the final state of the pro-
tocol should have fidelity ≥ 1 − ε to a maximally entangled
state ΦMAMB

of Schmidt rank M . Let Q(k)
II (NA→B , n, ε)

denote the non-asymptotic quantum capacity assisted by k-
extendible channels; i.e., Q(k)

II (NA→B , n, ε) is the maximum
value of 1

n log2M such that there exists an (n,M, ε) protocol
for NA→B as described for the more involved case above.

Theorem 2 The following bound holds for all k ≥ 2 and for
any (1,M, ε) entanglement transmission protocol that uses a
channel N assisted by a k-extendible post-processing:

− log2

[
1

M
+

1

k
− 1

Mk

]
≤ sup
ψRA

Eεk(R;B)τ , (4)

where Eεk(R;B)ρ := infσRB∈EXTk(R;B)D
ε
h(ρRB‖σRB),

τRB := NA→B(ψRA), and the optimization is with respect
to pure states ψRA such that R ' A. The following bound
holds for all k ≥ 2 and for any (1,M, ε) entanglement dis-
tillation protocol that uses a quantum state ρAB assisted by a
k-extendible post-processing:

− log2

[
1

M
+

1

k
− 1

Mk

]
≤ Eεk(A;B)ρ. (5)

The proof of the above theorem follows by employing
the fact that Eεk does not increase under the action of a k-
extendible channel, because the extendibility of a k-extendible
state does not change under the action of U ⊗U∗ for a unitary
U , and by employing [41, Theorem III.8].

Theorem 3 The following bound holds for all k ≥ 2 and for
any (n,M, ε) quantum communication protocol employing n
uses of a channel N interleaved by k-extendible channels:

− log2

[
1

M
+

1

k
− 1

Mk

]
≤ nEmax

k (N ) + log2

(
1

1− ε

)
,

where

Emax
k (N ) := sup

ψRA

inf
σRB∈EXTk(R;B)

Dmax(τRB‖σRB),

τRB := NA→B(ψRA), and the optimization is with respect to
pure states ψRA with |R| = |A|.

We note here that special cases of the entanglement dis-
tillation and quantum communication protocols described
above occur when the k-extendible assisting channels are
taken to be 1W-LOCC channels. As such, D(k)(ρAB , n, ε),
Q

(k)
I (NA→B , n, ε), and Q(k)

II (NA→B , n, ε) are upper bounds
on the non-asymptotic distillable entanglement and capacities
when 1W-LOCC channels are available for assistance.

Pretty strong converse for antidegradable channels—As a
direct application of Theorem 3, we revisit the “pretty strong
converse” of [42] for antidegradable channels. Recall that a
channel NA→B is antidegradable [43, 44] if the output state
NA→B(ρRA) is two-extendible for any input state ρRA. Due
to this property, antidegradable channels have zero asymptotic
quantum capacity [17, 45]. Theorem 3 implies the following
bound for the non-asymptotic case:
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Corollary 1 Fix ε ∈ [0, 1/2). The following bound holds
for any (n,M, ε) quantum communication protocol employ-
ing n uses of an antidegradable channel N interleaved by
two-extendible channels: 1

n log2M ≤ 1
n log2

(
1

1−2ε

)
.

We conclude from the above inequality that, for an an-
tidegradable channel, there is a strong limitation on its ability
to generate entanglement whenever the error parameter ε < 1

2 ,
as is usually desired for applications in quantum computa-
tion. We also remark that the bound above is tighter than re-
lated bounds given in [42], and furthermore, the bound applies
to quantum communication protocols assisted by interleaved
two-extendible channels, which were not considered in [42].

Limitations on quantum devices—In practice, the evolution
effected by quantum processors is never a perfect unitary pro-
cess. There is always some undesirable interaction with the
environment, the latter of which is inaccessible to the proces-
sor. Furthermore, there are practical limitations on the abil-
ity to construct perfect unitary gates [46]. The depolarizing
and erasure channels are two classes of noisy models for qubit
quantum processors that are widely considered (see [47–49]).

Both families of channels mentioned above are covariant
channels [50]; i.e., these channels are covariant with respect to
a group G with representations given by a unitary one-design.
Thus, these channels can be simulated using 1W-LOCC with
the Choi states as the resource states [51, Section VII]. Using
this symmetry and the monotonicity of the unextendible gen-
eralized divergence under 1W-LOCC, we conclude that the
optimal input state to a covariant channel N , with respect
to the upper bound in Theorem 2, is a maximally entangled
state ΦRA. Also, for any (n,M, ε) quantum communica-
tion protocol conducted over a covariant channel and assisted
by any k-extendible channel, the optimal input state is Φ⊗nRA
and Q(k)

II (NA→B , n, ε) = Q
(k)
I (NA→B , n, ε); i.e., an upper

bound on non-asymptotic quantum capacity Q(k)
II is given by

Theorem 2.
A qubit depolarizing channel acts on an input state ρ as

DpA→B(ρ) = (1 − p)ρ + p
3 (XρX + Y ρY + ZρZ), where

p ∈ [0, 1] is the depolarizing parameter, and X , Y , and Z are
Pauli operators. The best known upper bound on the aysmp-
totic quantum capacity of this channel for values of p ∈ [0, 1

4 )
was recently derived in [52, 53], and this channel has zero
asymptotic quantum capacity for p ∈ [ 1

4 , 1] [54, 55].
With the goal of bounding the non-asymptotic quantum ca-

pacity of Dp, we make a particular choice of the k-extendible
state for Eεk (which need not be optimal) to be a tensor power
of the isotropic states σ(t,2)

AB , which is similar to what was done
in [3]. The inequality in Theorem 2 then reduces to

1

n
log2M ≤

1

n
log2

(
1− 1

k

)
− 1

n
log2

(
f(ε, p, t)− 1

k

)
,

(6)
where f(ε, p, t) = 2−D

ε
h({1−p,p}⊗n‖{t,1−t}⊗n) and {1−p, p}

denotes a Bernoulli distribution. The optimal measurement
(Neyman-Pearson test) for the resulting hypothesis testing
relative entropy between Bernoulli distributions is then well
known [56] (see also [57]), giving an explicit upper bound on
the rate 1

n log2M . Figure 1 compares various upper bounds
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FIG. 1. Upper bounds on the number of qubits that can be reliably
transmitted over a depolarizing channel with p = 0.15, and ε =
0.05. The red dashed line is from Theorem 2. The green dash-dotted
and blue dotted lines are upper bounds from [3] and [4], respectively.
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FIG. 2. Upper bounds on the number of qubits that can be reliably
transmitted over an erasure channel with p = 0.35, and ε = 0.05.
The red dashed line is the bound from Theorem 2. The green dash-
dotted line is an upper bound from [3].

on the number of qubits that can be reliably transmitted over
n uses of the depolarizing channel. The bounds plotted are
the ones derived from Theorem 2 (labeled “KDWW”), as well
as two other known upper bounds on non-asymptotic quan-
tum capacities [3, 4]. The figure demonstrates that the bounds
coming from the resource theory of unextendibility are signif-
icantly tighter than those from [3, 4]. Note that (6) converges
to the upper bound from [3, 58] in the limit k →∞.

A qubit erasure channel acts on an input state ρ as
EpA→B(ρA) = (1− p)ρB + p |e〉〈e|B [16], where p ∈ [0, 1] is
the erasure probability, and the erasure state |e〉〈e| is orthog-
onal to the input Hilbert space. We employ the symmetries
of the erasure channel to make a particular choice of the k-
extendible state for Eεk. Theorem 2 gives upper bounds on
the number of qubits that can be reliably transmitted over n
uses of the erasure channel. The bounds that we obtain are
not necessarily optimal, but they still are significantly tighter
than those from [3]. See Figure 2.

Discussion—In this paper, we developed the resource the-
ory of unextendibility and discussed limits that it places on
the performance of finite-sized quantum processors. The free
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states in this resource theory are k-extendible states, and the
free channels are the k-extendible channels. We determined
non-asymptotic upper bounds on the rate at which qubits can
be transmitted over a finite number of uses of a given quan-
tum channel. The bounds coming from the resource theory of
unextendibility are significantly tighter than those in [3, 4] for
depolarizing and erasure channels.

It would be interesting to explore the resource theory of
unextendibility further. One plausible direction would be to
use this resource theory to obtain non-asymptotic converse
bounds on the entanglement distillation rate of bipartite quan-
tum interactions and compare with the bounds obtained in
[59, 60]. Another direction is to analyze the bounds in Theo-
rem 2 for other noise models that are practically relevant. Fi-
nally, it remains open to link the bounds developed here with
the open problem of finding a strong converse for the quantum
capacity of degradable channels [42]. To solve that problem,
recall that one contribution of [42] was to reduce the ques-
tion of the strong converse of degradable channels to that of
establishing the strong converse for symmetric channels.

Note—We noticed the related work “Optimising practical
entanglement distillation” by Rozpedek et al. recently posted
as arXiv:1803.10111, which like us uses extendibility to ad-
dress entanglement distillation, and which presents results that
are complementary to ours.
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