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We generalize the Landauer formula to describe the dissipative electron transport through a su-
perconducting point contact. The finite-temperature, linear-in-bias, dissipative DC conductance
is expressed in terms of the phase- and energy-dependent scattering matrix of the Bogoliubov
quasiparticles in the quantum point contact. The derived formula is also applicable to hybrid
superconducting-normal structures and normal contacts, where it agrees with the known limits of
Andreev reflection and normal-state conductance, respectively.

The celebrated Landauer formula1 relates the conduc-
tance of a mesoscopic sample to the transmission coef-
ficient for electrons passing through it, and is valid for
arbitrary transmission strength. The derivation is usu-
ally approached via a scattering formalism, or the Kubo
formula2 applied to an ensemble of non-interacting
fermions. The former method relies on charge conser-
vation; the latter requires performing the calculation at
a finite frequency ω, followed by taking the limit ω → 0
at small but fixed bias V in order to obtain the DC
conductance.

In the case of a superconducting junction, both of
these approaches are problematic. The asymptotic scat-
tering states are free-propagating Bogoliubov quasipar-
ticles with no well-defined charge, which precludes a
direct application of scattering theory. In the linear-
response theory, the instantaneous current across the
junction depends on the phase difference ϕ; and the
phase perturbation, 2eV/~ω, diverges in the limit ω →
0. This divergence is an indication of the AC Josephson
effect3, which predicts a non-dissipative current oscillat-
ing in time with frequency 2eV/~. The non-perturbative
in V, dissipationless alternating current component,
however, generally coexists with a linear-in-V dissipative
one. Indeed, for the case of weak tunnelling, the current
at finite bias V and any temperature T was found4 to
the lowest order in transmission coefficient. A linear-in-
V expansion of the current-voltage characteristic4 of a
tunnel junction between two superconductors5 yields a
finite value of the linear conductance6 at T 6= 0. This
dissipative conductance G(T ) is caused by Bogoliubov
quasiparticles tunnelling across the junction.

The perturbative-in-tunneling results are adequate
for conventional large-area Josephson junctions, but
are not applicable to point contacts having one or a
few channels with high transmission coefficient. Such
junctions are presently actively studied in a variety of
platforms, including proximitized nanowires7 and cold
fermions8,9. The purpose of this work is to free the eval-
uation of G(T ) from the assumption of weak tunneling.
Our main result, Eq (12), expresses G(T ) in terms of
the quasiparticle scattering matrix. This generalization
of the Landauer formula is valid for a junction between
leads made of superconductors or normal conductors, in
any combination. Additionally, the derived relation pro-
vides a lucid interpretation of the dissipative, so-called10

FIG. 1. (a) A point contact between two superconductors
SC1 and SC2 under applied bias V. (b) To evaluate the dis-
sipative current due to the quasiparticles at finite tempera-
ture T , we absorb the bias voltage in the time dependence of
the quasiparticle scattering matrix S(Ω t), where Ω = eV/~.
The main general expression for dissipative conductance G
is given in Eq. (12) and application to a specific model of a
superconducting point contact (SPC) in Eq. (15).

“cosϕ” component3 of the AC Josephson current.

Aiming at evaluation of G(T ) for a system with bro-
ken gauge invariance, it is useful to reformulate the
problem so that the chemical potentials of the leads are
not affected by the bias. This is achieved by introducing
a time-dependent phase eVt/~ in the definition of the
creation operators for electrons to which bias is applied,
ψ† → ψ† exp(ieVt/~) and thus endowing the scattering
matrix describing the contact with a periodic depen-
dence on time, see Fig. 1. The time dependence allows
for energy absorption by electrons passing through the
junction, i.e., introduces channels of inelastic scattering.
The energy transfer is quantized in units of ~Ω = eV,
small in the limit V → 0. Our strategy consists of two
steps. First, we relate the scattering matrix for such
“soft” inelastic processes to the conventionally-defined
elastic scattering matrix of the system in the absence of
time dependence. Next, we evaluate the absorbed power
P in terms of scattering matrix and find G(T ) from the
relation P = GV2 for Ohmic losses. This method avoids
problems associated with the charge non-conservation
and presence of large non-dissipative currents. The re-
sult, Eq. (12), is applicable to superconducting and hy-
brid normal metal–superconductor structures. For such
structures, Eq. (12) has the same status as that of the
standard Landauer formula for the normal-state con-
tacts; in the absence of superconductivity, Eq. (12) read-
ily reduces to the conventional form of the Landauer
formula.
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Inelastic quasiparticle scattering in channel N is asso-
ciated with absorption of N quanta (N = 0,±1,±2, . . . )
and is characterized by scattering matrix SN . In order
to relate SN to the elastic scattering matrix, we consider
a generic scattering problem with a Hamiltonian

H = H0 +W (t), (1)

W (t) = V e−iφ(t) + V †eiφ(t) + V0,

where H0 describes the two leads, and W (t) repre-
sents the coupling between them (V and V † terms) and
backscattering off the junction (term V0)11. In the case
of the time-independent phase, φ(t) = φ, scattering is
elastic and described by an instantaneous scattering ma-
trix S(φ). At a finite bias, the phase φ(t) = Ω t winds
with frequency Ω, allowing for inelastic transitions with
energy transfer N~Ω.

To relate SN to S(φ), we compare their respective rep-
resentations by infinite-order series in W . For that, we
inspect the time evolution of the wave-function |ψ(t)〉 =
U(t)|m〉 with the initial state |m〉 at t = −∞; here |m〉
is an eigenstate of H0 with energy εm. The evolution
operator is given by the usual time-ordered exponential

U(t) = T exp
[

1
i ~
∫ t
−∞ dt1WI(t1)

]
, and the subscript I

stands for the interaction representation. The k-th or-
der expansion term of the evolution operator12 reads

Uk(t) =
1

(i ~)k

∫ t

−∞
dtkWI(tk) · · ·

∫ t2

−∞
dt1WI(t1).

At this point, it is convenient to introduce a variable s
taking values 0,±1 and rewrite W (t) =

∑
s V

seisφ(t),
where V −1 ≡ V , V +1 ≡ V †, and V 0 ≡ V0. That al-
lows one to further specify the form of the expansion
term. For φ(t) = Ω t, we may write Uk(t) as a sum of
harmonics,

Uk(t) =
∑
N

eiNΩt

(i ~)k

∑
s1,...sk

δσk,N

∫ t

−∞
dtke

iσkΩ(tk−t)V skI (tk)

· · ·
∫ t2

−∞
dt1e

iσ1Ω(t1−t2)V s1I (t1), (2)

with σk = sk + . . . + s1. A similar result for the static
problem, φ(t) = φ, is obtained from Eq. (2) by replacing
the factor eiNΩt → eiNφ and setting Ω = 0 in all the
integrands.

This form of Uk(t) allows a direct comparison of the
perturbative expansion of the wavefunctions for linearly
winding phase φ(t) = Ω t, and for fixed phase φ(t) = φ,

which we denote |ψ̃(t)〉 and |ψ(t)〉, respectively. Project-
ing the two wave functions onto the energy eigenstate
|n〉 of H0 with energy εn, we find

〈n|ψ̃(t)〉 ≡ 〈n|
[
U(t)|φ(t)=Ωt

]
|m〉 (3)

= δnm +
∑
N

1

i ~

∫ t

−∞
dt′ ei(εn,m+~ΩN)t′/~−0|t′| T̃nm(N,Ω)

and

〈n|ψ(t)〉 ≡ 〈n|
[
U(t)|φ(t)=φ

]
|m〉 (4)

= δnm +
1

i ~

∫ t

−∞
dt′ eiεn,mt

′/~−0|t′| Tnm(φ) .

The T -matrices introduced above are given by the fol-
lowing series:

T̃nm(N,Ω) =

∞∑
k=1

∑
mk−1,...,m1

sk+...+s1=N

(5)

×
V sknmk−1

. . . V s1m1m

(εm,mk−1
− ~Ωσk−1 + i0) . . . (εm,m1

− ~Ωσ1 + i0)

and

Tnm(φ) = (6)∑
N

eiφN
∞∑
k=1

∑
mk−1,...,m1

sk+...+s1=N

V sknmk−1
. . . V s1m1m

(εm,mk−1
+ i0) . . . (εm,m1

+ i0)
.

Here, we introduced the notation εm,n = εm − εn and
wrote the matrix elements as V smn = 〈m|V s|n〉. A finite
Ω brings about inelastic transitions with an arbitrary
integer number N of energy quanta ~Ω being released
(N > 0) or absorbed (N < 0). The corresponding tran-

sition amplitudes are given by T̃nm(N,Ω). In the case
of fixed-phase, φ(t) = φ, the scattering is elastic.

By comparing the inelastic (5) and elastic (6) T -
matrices, we note that in the limit Ω→ 0

T̃nm(N, 0) =

∫ 2π

0

dφ

2π
Tnm(φ) e−iφN . (7)

The utility of this expression is that the scattering ma-
trix of a time-independent problem may be easier to
evaluate. The use of Eq. (7) is justified as long as the
effect of ~Ω in the energy denominators of Eq. (5) is
negligible. An applicability criterion specific to a super-
conducting junction is discussed in the end of the paper.
We note in passing that Eq. (7) agrees with the “frozen
scattering matrix” principle set forward in Refs. [13,14].
Next, we evaluate dissipative conductance using Eq. (7).

The dissipated power may be written using scattering
theory, where the absorbed power, averaged over states
in equilibrium, is15

P =
2π

~
∑
N

N~Ω
∑
n,m

∣∣∣T̃nm(N,Ω)
∣∣∣2 (8)

× [f(εn)− f(εm)] δ(εn − εm + ~ΩN).

Each term in the sum over N here has a simple meaning:
it is a product of the energy N~Ω absorbed in a transi-
tion, multiplied by the transition rate (here f(εn,m) are
fermionic occupation factors). In the framework of scat-
tering theory, it is customary to work in the continuous
energy representation instead of the discrete indices n
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and m. Therefore, we replace n → (ε′α), m → (εβ)
and introduce the density of states ρα(ε′) and ρβ(ε) to
re-write Eq. (8) in the form

P =
2π~Ω

~
∑
N

N
∑
α,β

∫∫
dε′dε ρα(ε′)ρβ(ε) (9)

×
∣∣∣T̃ε′α , εβ(N,Ω)

∣∣∣2 [f(ε′)− f(ε)] δ(ε′ − ε+ ~ΩN).

Here, α and β are the residual discrete indices; they
may label channels, leads, particle-hole branches, etc.
We integrate Eq. (9) over ε′ and expand to the lowest
(second) order in Ω

P =
2π(~Ω)2

~
∑
N

N2
∑
αβ

∫
dε ρα(ε)ρβ(ε) (10)

×
∣∣∣T̃εα , εβ(N, 0)

∣∣∣2 [−∂εf(ε)].

Crucially, the inelastic T -matrix T̃ (N,Ω = 0) is evalu-
ated at Ω = 0 in Eq. (10). So we may express it via the
elastic T -matrix according to Eq. (7),

P =
2π(~Ω)2

~

∫
dε [−∂εf(ε)]

2π∫∫
0

dφ′dφ

(2π)2
(11)

×
∑
N

eiN(φ′−φ)N2
∑
αβ

ρα(ε)ρβ(ε) T ∗εα , εβ(φ′)Tεα , εβ(φ).

Next we use the relation12,16 between the T -matrix
and the on-shell elastic scattering matrix and re-
place the derivatives −2πi

√
ρα(ε)ρβ(ε) ∂φTεα , εβ(φ) →

∂φSαβ(φ, ε), which allows one to express the summation
over α and β as a trace. Further simplification comes
from noticing that

∑
N e

iN(φ′−φ)N2 = 2π∂φ∂φ′δ(φ−φ′)
in Eq. (11). Finally, recalling that Ω = Ve/~ and
G = P/V2, we obtain the dissipative conductance,
which is the main result of this work:

G =
e2

h

∫
dε [−∂εf(ε)]

2π∫
0

dφ

2π
Tr
{
∂φS

†(φ, ε) ∂φS(φ, ε)
}
.

(12)

Consistently with Eq. (1), the gauge in Eq. (12) is fixed
by associating the phase factor eiφ with the transmission
amplitude of the normal-state scattering matrix. For
a superconducting junction, the order parameter phase
difference across the junction is ϕ = 2φ.

It is instructive to relate the DC conductance G
to the dissipative part of the low-frequency admit-
tance Y (ω → 0, φ, T ) of the same junction.17 In eval-
uating ReY (ω → 0, φ, T ), the perturbation δφ(t) =
eU cos(ωt)/~ω of the phase φ(t) = φ+ δφ(t) across the
junction is a small parameter, as the limit U → 0 is
taken first. Applying the same technique as above, we
find that only single-quantum transitions occur to linear

order in U , with amplitudes ∝ ∂φS . Evaluation of the
absorption power yields18

ReY (ω → 0, φ, T ) (13)

=
e2

h

∫
dε [−∂εf(ε)] Tr

{
∂φS

†(φ, ε) ∂φS(φ, ε)
}
.

Comparing Eq. (12) with (13) and recalling that the
phase winds with time as eVt/~, we conclude that G
may be viewed as a time-averaged value

G = ReY (ω → 0, eVt/~, T ) (14)

of the instantaneous conductance given by the dissipa-
tive part of the admittance. It generalizes the known
relation in normal junctions2 between the DC Landauer
conductance and the ω → 0 limit of the Kubo formula.

Equation (12) is non-perturbative in tunneling, which
is one of its advantages over the known4,5 results. We
illustrate the utility of Eq. (12) by finding the con-
ductance between two superconductors connected by a
short channel of arbitrary transmission coefficient, see
Fig. 1. Finite temperature induces a thermal popula-
tion of quasiparticles in each of the two leads. To start
with, we focus on the case of equal gaps ∆1 = ∆2 = ∆.
We follow Ref. [19] and evaluate the corresponding S-
matrix. In the Bogoliubov-de Gennes representation,
the quasiparticle excitations have positive energy ε > ∆,
and the S-matrix is 4-by-4 due to the 2 leads and 2
particle-hole branches, see [20] for details. We ap-
ply Eq. (12) and evaluate the conductance at arbitrary
transmission coefficient τ of the junction,

GSPC
Gn

=

∫ ∞
∆

dε [−∂εf(ε)]
2 ε2√

(ε2 −∆2)(ε2 −∆2(1− τ))
.

(15)

Here Gn = 2e2τ/h is the normal-state conductance. An
alternative way to derive Eq. (15) is to use Eq. (14) and
the result21 for ReY (Ω, φ, T ).

It is instructive to consider first the low-temperature
asymptote, ∆/T � 1,

GSPC(∆/T, τ)

Gn(τ)
(16)

≈

√
2∆

∆ + εA(τ)

∆

T
e−

∆+εA(τ)

2T K0

[
∆− εA(τ)

2T

]
,

where K0(x) is the modified Bessel function. Note that
the superconducting contact supports Andreev levels

with energies εA(τ, φ) = ∆
√

1− τ sin2 φ carrying the
Josephson current, which is not the subject of this work.
However the indirect effect of the Andreev levels is ob-
served in Eqs. (15) and (16), where we denote εA(τ) ≡
εA(τ, π/2) = ∆

√
1− τ . The Andreev levels lead to a

strong modification of the density of states of the de-
localized quasiparticles and thus influence their trans-
port. The low-temperature conductance (16) displays a
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FIG. 2. (a) Conductance GSPC of a superconducting point
contact as a function of transmission coefficient τ evaluated
from Eq. (15) at a low temperature, T/∆ = 0.05. The two
asymptotes of Eq. (16), shown in dashed lines, are valid,
respectively, at transmission τ � T/∆ and τ � T/∆. (b)
GSPC as a function of ∆/T (solid lines) at two fixed values
of τ , along with the asymptotes (16) and (17), shown by
dashed lines.

crossover between two asymptotes defined by a dimen-
sionless ratio ∆−εA

T ∝ τ∆
T . Above the crossover tem-

perature (T � τ∆), the conductance may be approxi-

mated as GSPC = Gn
∆
T ln[4 e−γ T/(∆− εA)]e−

∆
T (here

γ is the Euler-Mascheroni constant). We note that the
perturbative-in-τ result4,5 which diverges as 2eV → 0,
is cut off by the scale ∆− εA. Below the crossover tem-

perature (T � τ∆), one finds GSPC = Gn

√
2π∆
τT e−

∆
T .

Both asymptotes are illustrated in Fig. 2(a).
The high-temperature T � ∆ (i.e. small-gap) asymp-

tote is

GSPC(∆/T, τ)

Gn(τ)
≈ 1 +

∆

T
k(τ) . (17)

Note that the coefficient k(τ) ≥ 0 (see Ref. [20] for
the full expression). It is logarithmically large, k(τ) ∼
− 1

4 ln τ , for τ → 0, and k(τ = 1) = 0 . Therefore, at any
τ < 1 the conductance GSPC initially grows with the
opening of the superconducting gap ∆. We plot the de-
pendence of GSPC on ∆/T in Fig. 2(b) and observe that
the conductance reaches maximum at ∆ ∼ T . Note that

the thermoelectric transport coefficients of SPC exhibit
similar behavior22.

The dissipative conductance Eq. (15) involves an un-
usual type of multiple Andreev reflection processes. In
such events, quasiparticles are not created but rather
gain energy exceeding eV at N > 1. In the context
of Eqs. (8)–(10), N represents the number of energy
quanta ~Ω absorbed or emitted during the quasiparticle
tunnelling. Because of the relation ~Ω = eV, integer N
also has the meaning of the number of electrons passing
through the junction in a scattering event. The cor-
responding probabilities are given by the appropriately
thermally-averaged20 values of |T̃ (N,Ω)|2, see Eq. (10).

At T � ∆·τ , the averaged |T̃ (N,Ω)|2 depend weakly on

N forN < N∗ =
√

∆τ/T and decay as T̃ (N,Ω) ∼ 1/N4

for N > N∗. This indicates that processes with a trans-
fer of a large number of electrons gain significance at
low temperatures.

If both leads are superconducting, the series for the
absorbed power (10) contains infinitely many terms in
N , and the trace formula (12) is an agile way to calculate
G. If at least one of the leads is non-superconducting,
the sum over N in Eq. (10) truncates. As an example,
we consider an NS junction, i.e. set ∆1 = 0, ∆2 = ∆. It
is easy to see20 that the highest harmonics of the elastic
S-matrix are e±2iφ, truncating the series at |N | = 2.
Evaluating the sum or using the trace formula (12), and
accounting for the unitarity of the S-matrix, we recover
the known23 expression,

GNS =
2e2

h

∫ ∞
0

dε [− ∂εf(ε)]
[
(1− |ree|2 + |rhe|2)

+ (1− |rhh|2 + |reh|2)
]
, (18)

where ree(ε), rhh(ε), and rhe(ε), reh(ε) are, respec-
tively, the particle, hole, and two Andreev reflection
amplitudes24. The S-matrix of a normal junction (∆1 =
∆2 = 0) contains only e±iφ harmonics, along with a φ-
independent part. As a result, rhe(ε) = reh(ε) = 0 and
Eq. (18) reduces to the standard Landauer formula in
the particle-hole representation.

In the derivation of Eq. (12), we relied upon the re-
lation between elastic and “soft” inelastic scattering
matrices, cf. Eq. (7). This is justified as long as
~Ω is negligible compared to the typical energy differ-
ences εm − εm′ involved in the summation over virtual
states. In the context of a tunnel junction between
two superconductors with gaps ∆1 6= ∆2, one may es-
timate the significance of the next-order in Ω = eV/~
terms by expanding in V the known4 expression, I(V) =
I1(V) + I3(V) +O(V5), where In(V) ∝ Vn. We evaluate
the ratio of the consecutive terms in the expansion of

current20 and find I3
I1
∝ (eV)2

T 2 and I3
I1
∝ (eV)2

(∆1−∆2)2 in the

cases |∆1 −∆2| � T and |∆1 −∆2| � T , respectively.
In other words, the next-order corrections in eV may be
dropped as long as ~Ω = eV is the smallest energy scale
in the problem. At finite transmission τ and equal gaps,
for which Eq. (15) is derived, this applicability criterion
amounts to eV � min[T,∆− εA(τ)].
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It is worth emphasizing that the derived dissipa-
tive conductance GSPC , Eq. (15), is entirely due to
the itinerant Bogoliubov quasiparticles passing through
the junction. The associated Andreev levels do not
contribute to the dissipation in the absence of relax-
ation. The latter creates an additional channel of dis-
sipation via the Debye mechanism25. To quantify this,
we introduce a phenomenological relaxation rate γ for
an occupied Andreev level26 and estimate the ratio
IA
Iqp

of the dissipative current IA(V) due to the An-

dreev levels20 and the current Iqp(V) = GSPCV due

to the quasiparticles. In the limit τ∆
T � 1, we es-

timate IA
Iqp
∝ τ

ln(T/τ∆)
∆ ~γ

(~γ)2+(2eV)2 , indicating that the

quasiparticle current Iqp dominates even in the linear-
in-V regime (eV � ~γ) provided the relaxation rate
~γ & τ∆. In the limit of low temperatures T/∆ � 1
and intermediate τ , we find that the ratio of currents
scales as IA

Iqp
∝ T

~γ exp[∆
T (1 −

√
1− τ)] and IA

Iqp
∝

T ~γ
(eV)2 exp[∆

T (1−
√

1− τ)] in the opposite regimes of small

(eV � ~γ) and large (eV � ~γ) bias, respectively. In

the latter regime, the large exponential factor may be
mitigated by a small γ. Note that in the absence of
the relaxation due to phonons as, e.g., in the cold atom
experiments9, the relaxation is itself determined by the
quasiparticle population and is, therefore, exponentially
suppressed at low temperatures, γ ∝ exp(−∆/T ) .

In summary, we have expressed the dissipative lin-
ear conductance G of a superconducting quantum point
contact in terms of the scattering matrix for Bogoliubov
quasiparticles, see Eq. (12). At a finite temperature, G
is finite; Eq. (12) adequately accounts for the thermally-
excited quasiparticles passing through the junction. It
generalizes the Landauer formula and is valid for junc-
tions with normal or superconducting leads. In addi-
tion, we uncovered the relation (14) between the DC
conductance and the phase-averaged real part of the AC
admittance of a junction.
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