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In spatially periodic Hermitian systems, such as electronic systems in crystals, the band structure
is described by the band theory in terms of the Bloch wave functions, which reproduces energy levels
for large systems with open boundaries. In this paper, we establish a generalized Bloch band theory
in one-dimensional spatially periodic tight-binding models. We show how to define the Brillouin
zone in non-Hermitian systems. From this Brillouin zone, one can calculate continuum bands, which
reproduce the band structure in an open chain. As an example we apply our theory to the non-
Hermitian SSH model. We also show the bulk-edge correspondence between the winding number
and existence of the topological edge states.

The band theory in crystals is fundamental for describ-
ing electronic structure1. By introducing the Bloch wave
vector k, the band structure calculated within a unit cell
reproduces that of a large crystal with open boundaries.
Here it is implicitly assumed that the electronic states are
almost equivalent between a system with open bound-
aries and that with the periodic boundaries, represented
by the Bloch wave function with real k. It is because the
electronic states extend over the system.

Recently non-Hermitian systems, which are described
by non-Hermitian Hamiltonians have been attracting
much attention. These systems have been both theo-
retically and experimentally studied in many fields of
physics2–71. In particular, the bulk-edge correspondence
has been intensively studied in topological systems. In
contrast to Hermitian systems, it seems to be violated
in some cases. The reasons for this violation have been
under debate52,72–94.

One of the controversy is that in many previous works,
the Bloch wave vector has been treated as real in non-
Hermitian systems similarly to Hermitian ones. In
Ref. 83, it was proposed that in one-dimensional (1D)
non-Hermitian systems, the wave number k becomes
complex. The value of β ≡ eik is confined on a loop on
the complex plane, and this loop is a generalization of the
Brillouin zone in Hermitian systems. In non-Hermitian
systems, the wave functions in large systems with open
boundaries do not necessarily extend over the bulk, but
are localized at the either end of the chain unlike those
in Hermitian systems. This phenomenon is called the
non-Hermitian skin effect83. Thus far, how to obtain the
generalized Brillouin zone has been known only for sim-
ple systems.

In this paper, we establish a generalized Bloch band
theory in a 1D tight-binding model in the way to de-
termine the generalized Brillouin zone Cβ for β ≡ eik,
k ∈ C. First of all, we introduce the “Bloch” Hamilto-
nian H (k) and rewrite it in terms of β as H (β). Then
the eigenvalue equation det [H (β)− E] = 0 is an al-
gebraic equation for β, and let 2M be the degree of
the equation. The main result is that when the eigen-
value equation has solutions βi (i = 1, · · · , 2M) with

|β1| ≤ |β2| ≤ · · · ≤ |β2M−1| ≤ |β2M |, Cβ is given
by the trajectory of βM and βM+1 under a condition
|βM | = |βM+1|. It is obtained as the condition to con-
struct continuum bands, which reproduce band structure
for a large crystal with open boundaries. We note that in
Hermitian systems, this condition reduces to Cβ : |β| = 1,
meaning that k becomes real. In the previous works, sys-
tems with M = 1 have been studied in general cases83

and in limited cases95.
A byproduct of our theory is that one can prove the

bulk-edge correspondence. The bulk-edge correspon-
dence has been discussed, but in most cases, it has not
been shown rigorously but by observation on some par-
ticular cases, together with an analogy to Hermitian sys-
tems. It in fact shows that the bulk-edge correspondence
for the real Bloch wave vector cannot be true in non-
Hermitian systems. In this paper, we show the bulk-
edge correspondence in the non-Hermitian SSH model
with the generalized Brillouin zone, and discuss the rela-
tionship between a topological invariant in the bulk and
existence of the edge states.
We start with a 1D tight-binding model, with its

Hamiltonian given by

H =
∑

n

N
∑

i=−N

q
∑

µ,ν=1

ti,µνc
†
n+i,µcn,ν , (1)

where N represents the range of the hopping and q repre-
sents the degrees of freedom per unit cell. This Hamilto-
nian can be non-Hermitian, meaning that ti,µν is not nec-
essarily equal to t∗−i,νµ. Then one can write the real-space
eigen-equation asH |ψ〉 = E |ψ〉, where the eigenvector is

written as |ψ〉 = (· · · , ψ1,1, · · · , ψ1,q, ψ2,1, · · · , ψ2,q, · · · )
T

in an open chain. Thanks to the spatial periodicity, one
can write the eigenvector as a linear combination:

ψn,µ =
∑

j

φ(j)n,µ, φ
(j)
n,µ = (βj)

n
φ(j)µ , (µ = 1, · · · , q). (2)

By imposing that φ
(j)
n,µ is an eigenstate, one can obtain

the eigenvalue equation (for example, see Eq. (7)) for
β = βj as

det [H (β)− E] = 0. (3)
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FIG. 1. Schematic figure of the band structure (a) in a finite
open chain with various system sizes L, and (b) of the gen-
eralized Bloch Hamiltonian. The vertical axis represents the
distribution of the complex energy E.

Here this eigenvalue equation is an algebraic equation for
β with an even degree 2M in general cases96.
One can see from Eq. (2) that β corresponds to the

Bloch wave number k ∈ R via β = eik in Hermitian sys-
tems. The bulk-band structure for reality of k reproduces
the band structure of a long open chain. When extending
this idea to non-Hermitian systems, we should choose the
values of β such that the bands of the Hamiltonian H (β)
reproduce those of a long open chain (Fig. 1). The levels
are discrete in a finite open chain, and as the system size
becomes larger, the levels become dense and asymptot-
ically form continuum bands (Fig. 1). Therefore, in or-
der to find the generalized Brillouin zone Cβ , one should
consider asymptotic behavior of level distributions in an
open chain in the limit of a large system size. In Her-
mitian systems, |β| is equal to unity, meaning that the
eigenstates extend over the bulk. On the other hand, in
non-Hermitian systems, |β| is not necessarily unity, and
these states may be localized at an either end of the chain.
Therefore these bands cannot be called bulk bands, but
should be called continuum bands. These states are in-
compatible with the periodic boundaries. The continuum
bands are formed by changing β continuously along Cβ

as we show later.
We find how to determine the generalized Brillouin

zone Cβ , which determines the continuum bands. Here
we number the solutions βi (i = 1, · · · , 2M) of Eq. (3)
so as to satisfy |β1| ≤ |β2| ≤ · · · ≤ |β2M−1| ≤ |β2M |. We
find that the condition to get the continuum bands can
be written as

|βM | = |βM+1| , (4)

and the trajectory of βM and βM+1 gives Cβ . In Her-
mitian systems, we can prove that Eq. (4) becomes
|βM | = |βM+1| = 196, and Cβ is a unit circle |β| = 1.
When M = 1, this condition physically corresponds to
a condition for formation of a standing wave in an open
chain as proposed in Ref. 83. We discuss this point in
Sec. SI in Supplemental Material96.
To get Eq. (4), we focus on boundary conditions in

an open chain. Here we outline the discussion to show
Eq. (4), and give the detailed discussion in Secs. SII and
SIII in Supplemental Material96. We impose the wave
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FIG. 2. (a) Non-Hermitian SSH model. The dotted boxes
indicate the unit cell. (b)-(d) Generalized Brillouin zone Cβ

of this model. The values of the parameters are (b) t2 =
1, t3 = 1/5, γ1 = 4/3, and γ2 = 0; (b-1): t1 = 1.1 and (b-2):
t1 = −1.1, (c) t1 = 0.3, t2 = 1.1, t3 = 1/5, and γ1 = 0; (c-
1): γ2 = 4/3 and (c-2): γ2 = −4/3, and (d) t2 = 0.5, t3 =
1/5, γ1 = 5/3, and γ2 = 1/3; (d-1): t1 = 0.3 and (d-2):
t1 = −0.3.

function Eq. (2) to represent an eigenstate. Apart from
the positions near the two ends, it leads to the eigen-
value equation Eq. (3). The boundary conditions give
another constraint onto the values of βi (i = 1, · · · , 2M)
in a form of an algebraic equation. We now suppose the
system size L to be quite large, and consider a condi-
tion to achieve a densely distributed levels (Fig. 1). The

equation consists of terms of the form (βi1βi2 · · ·βiM )L.
When |βM | 6= |βM+1|, there is only one leading term pro-

portional to (βM+1 · · ·β2M )L, which does not allow con-
tinuum bands. Only when |βM | = |βM+1|, there are two

leading terms proportional to (βMβM+2 · · ·β2M )L and to

(βM+1βM+2 · · ·β2M )
L
. In such a case, the relative phase

between βM and βM+1 can be changed almost continu-
ously for a large L, producing the continuum bands. We
note that our condition Eq. (4) is independent of any
boundary conditions. In Ref. 83, it was proposed that
the continuum bands require |βi| = |βj |. Nonetheless it
is not sufficient; except for the case |βM | = |βM+1|, it
does not allow the continuum bands.
We apply Eq. (4) to the non-Hermitian SSH model as

shown in Fig. 2 (a). It is given by

H =
∑

n

[(

t1 +
γ1
2

)

c†n,Acn,B +
(

t1 −
γ1
2

)

c†n,Bcn,A

+
(

t2 +
γ2
2

)

c†n,Bcn+1,A +
(

t2 −
γ2
2

)

c†n+1,Acn,B

+t3

(

c†n,Acn+1,B + c†n+1,Bcn,A

)]

, (5)

where t1, t2, t3, γ1, and γ2 are real. The generalized Bloch
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FIG. 3. (Color online) Phase diagram and bulk-edge corre-
spondence with t3 = 1/5, γ1 = 5/3, and γ2 = 1/3. (a) Phase
diagram on the t1-t2 plane. The blue region represents that
the winding number is 1, and the orange region represents
that the system has exceptional points. Along the black ar-
row in (a) with t2 = 1.4, we show the results for (b) the
winding number, (d) energy bands in a finite open chain, and
(e) the continuum bands from the generalized Brillouin zone
Cβ. The edge states are shown in red in (d). (c) shows ℓ+
(red) and ℓ

−
(blue) on the R plane with t1 = 1 and t2 = 1.4.

Hamiltonian H (β) can be obtained by a replacement
eik → β, similarly to Hermitian systems, as H (β) =
R+ (β) σ+ + R− (β)σ−, where σ± = (σx ± iσy) /2, and
R± (β) are given by

R+ (β) =
(

t2 −
γ2
2

)

β−1 +
(

t1 +
γ1
2

)

+ t3β,

R− (β) = t3β
−1 +

(

t1 −
γ1
2

)

+
(

t2 +
γ2
2

)

β. (6)

Therefore the eigenvalue equation can be written as

R+ (β)R− (β) = E2, (7)

which is a quartic equation for β, i.e. M = 2, having four
solutions βi (i = 1, · · · , 4) satisfying |β1| ≤ |β2| ≤ |β3| ≤
|β4|. Then Eq. (4) is given by |β2| = |β3|

96.
The trajectory of β2 and β3 satisfying the condition

|β2| = |β3| determines the generalized Brillouin zone Cβ ,
and it is shown in Figs. 2 (b)-(d) for various values of the
parameters. It always forms a loop enclosing the origin
on the complex plane. Nonetheless we do not have a
rigorous proof that Cβ is always a single loop encircling
the origin. We find some features of Cβ . Firstly our
result does not depend on whether |β| is larger or smaller
than unity, as opposed to the suggestions in the previous
works57,83; in Fig. 2 (d-2), |β| takes both the values more
than and less than 1. Secondly Cβ can be a unit circle
even for non-Hermitian cases, for example, when t1 =
t3 = γ2 = 0. Finally Cβ can have cusps, corresponding
to the cases with three solutions share the same absolute
value96.
We calculate the winding number w for the Hamilto-

nian H(β). Thanks to the chiral symmetry, w can be
defined as96

w = −
w+ − w−

2
, w± =

1

2π
[argR± (β)]Cβ

, (8)

where [argR± (β)]Cβ
means the change of the phase of

R± (β) as β goes along the generalized Brillouin zone
Cβ in the counterclockwise way. It was proposed that w
corresponds to the presence or absence of the topological
edge states83.
We show how the gap closes in our model. It closes

when E = 0, i.e. R+ (β) = 0 or R− (β) = 0. Let
β = βa

i (i = 1, 2, a = +,−) denote the solutions of
the equation Ra (β) = 0 with |βa

1 | ≤ |βa
2 |. When E = 0

is in the continuum bands, Eq. (4) should be satisfied for
the four solutions β±

i (i = 1, 2). It can be classified into
two cases, (a) |βa

1 | ≤ |βa
2 | =

∣

∣β−a
1

∣

∣ ≤
∣

∣β−a
2

∣

∣ (a = +,−),

and (b) |βa
1 | ≤

∣

∣β−a
1

∣

∣ =
∣

∣β−a
2

∣

∣ ≤ |βa
2 | (a = +,−). In the

case (a), as one changes one parameter, the gap closes
at E = 0 and w+ and −w− change by one at the same
time, giving rise to the change of the winding number by
unity. On the other hand, in the case (b), only one of the
two coefficients R± (β) becomes zero, and it represents
an exceptional point.
We obtain the phase diagram on the t1-t2 plane in

Fig. 3 (a) and one on the γ1-γ2 plane in Fig. 4 (a). In
these phase diagrams, the winding number w is 1 in
the blue region. By definition, w changes only when
R± (β) = 0 on the generalized Brillouin zone Cβ , and
the gap closes. The energy bands in a finite open chain
calculated along the black arrow in Fig. 3 (a) are shown
in Fig. 3 (d), and one can confirm that the edge states ap-
pear in the region where w = 1. In addition, the contin-
uum bands using Cβ (Fig. 3 (e)) agree with these energy
bands. In Fig. 4 (b), we give the energy bands calcu-
lated along the green arrow in Fig. 4 (a), and the edge
states appear similarly to Fig. 3 (d). On the other hand,
the system has the exceptional points in the orange re-
gion. The phase with the exceptional points extends over
a finite region96.
We discuss the bulk-edge correspondence in our model.

The loops ℓ± drawn by R± (β) on the R plane are shown
in Fig. 3 (c) and Figs. 4 (c) and (d) for certain values
of the parameters. Both in Fig. 3 (c) and in Fig. 4 (c),
the system has the winding number w = 1 since both ℓ+
and ℓ− surround the origin O, leading to w+ = −1 and
w− = 1. In Fig. 4 (a), one can continuously change the
values of the parameters to the Hermitian limit, γ1, γ2 →
0, while keeping the gap open and w = 1 remain. The
same is true for Fig. 3 (a). Therefore, by following the
proof in Hermitian cases97, one can prove the bulk-edge
correspondence even for the non-Hermitian cases, and
existence of zero-energy states is derived96. On the other
hand, ℓ− passes O as shown in Fig. 4 (d), where the
system has the exceptional points. We note that the
winding number is not well-defined in this case.
In summary, we establish a generalized Bloch band the-

ory in 1D tight-binding systems, and obtain the condition
for the continuum bands. We show the way to construct
the generalized Brillouin zone Cβ , which is fundamen-
tal for obtaining the continuum bands. Here the Bloch
wave number k takes complex values in non-Hermitian
systems. Our conclusion, |βM | = |βM+1|, is physically
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FIG. 4. Phase diagram and bulk-edge correspondence with
t1 = 0, t2 = 1, and t3 = 1/5. (a) Phase diagram on the γ1-γ2
plane. The blue region represents that the winding number
is 1, and the orange region represents that the system has
exceptional points. (b) Energy bands calculated along the
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ℓ
−
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(c) γ1 = −1 and γ2 = 1.4, and (d) γ1 = 2.1 and γ2 = 1.4.
Note that ℓ

−
passes the origin in (d), which corresponds to

exceptional points.

reasonable in several aspects. First it is independent of
any boundary conditions. Thus, for a long open chain,
irrespective of any boundary conditions, the spectrum
asymptotically approaches the same continuum bands
calculated from Cβ

96. Second it reproduces the known
result in the Hermitian limit, i.e. |β| = 1. Third the
form of the condition is invariant under a replacement
β → 1/β. Suppose the numbering of the sites is reversed
by putting n′ = L+1−n for the site index n(= 1, · · · , L);
then β becomes β′ = 1/β, but the form of the condition

is invariant: |β′
M | =

∣

∣β′
M+1

∣

∣.
Through this definition of the continuum bands, one

can show the bulk-edge correspondence without ambigu-
ity by defining the winding number w from the general-
ized Brillouin zone in 1D systems with chiral symmetry.
Indeed we showed that the zero-energy states appear in
the non-Hermitian SSH model when w takes non-zero
values, and also revealed that these states correspond to
topological edge states. It is left for future works how
to calculate the continuum bands for systems with other
symmetries.
The construction of the generalized Brillouin zone

can be extended to higher dimensions as well. In two-
dimensional (2D) systems, we introduce the two param-
eters βx

(

= eikx
)

and βy
(

= eiky
)

. Then the eigenvalue
equation det [H (βx, βy)− E] = 0, where H (βx, βy) is a
2D generalized Bloch Hamiltonian, is an algebraic equa-
tion for βx and βy. If we fix βy (βx), this system can be
regarded as a 1D system, and the criterion is given by
∣

∣βx
Mx

∣

∣ =
∣

∣βx
Mx+1

∣

∣

(∣

∣

∣
βy
My

∣

∣

∣
=

∣

∣

∣
βy
My+1

∣

∣

∣

)

, where 2Mx (2My)

is the degree of the eigenvalue equation for βx (βy). Thus
we can get the conditions for the continuum bands. Nev-
ertheless it is still an open question how to determine the
generalized Brillouin zone in higher dimensions.
We also apply our theory to the tight-binding model

proposed in Ref. 74, and show that the Bloch wave num-
ber k has a nonzero imaginary part, and the bulk-edge
correspondence can be established with k ∈ C96. We con-
clude that some previous works on the bulk-edge corre-
spondence using reality of the Bloch wave vector require
further investigations.
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Nature 525, 354 (2015).

28 H. Zhao, S. Longhi, and L. Feng, Sci. Rep. 5, 17022 (2015).
29 K. Ding, Z. Q. Zhang, and C. T. Chan, Phys. Rev. B 92,

235310 (2015).
30 S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte,

K. Makris, M. Segev, M. Rechtsman, and A. Szameit, Nat.
Mater. 16, 433 (2017).

31 H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia,
R. El-Ganainy, D. N. Christodoulides, and M. Kha-
javikhan, Nature 548, 187 (2017).
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