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Mechanical motion can break the symmetry in which sound travels in a medium, 

but significant non-reciprocity is typically achieved only for large motion speeds. 

Here we combine moving media with zero-index acoustic propagation, yielding 

extreme non-reciprocity and induced bianisotropy for modest applied speeds. The 

metamaterial is formed by an array of waveguides loaded by Helmholtz resonators, 

and it exhibits opposite signs of the refractive index sustained by asymmetric Willis 

coupling for propagation in opposite directions. We use this response to induce non-

reciprocal positive-to-negative sound refraction, and propose a non-reciprocal 

metamaterial lens focusing only with excitation from one side based on asymmetric 

Willis coupling. 



 

Reciprocity in wave propagation requires that the response of a source remains the same 

when source and observation points are interchanged. Breaking this symmetry allows 

designing devices that exhibit different transmission for opposite propagation directions, 

which is important for protection of sensitive equipment from external interference and 

for full-duplex communications. For electromagnetic waves, several approaches have 

been proposed to break reciprocity, including biasing with external magnetic fields [1]-[2] 

transistors [3]-[4], angular momentum [5]-[6], spatiotemporal modulation [7]-[8], and 

non-linearities [9]-[10]. In acoustics, non-reciprocal devices have been mainly realized 

based on nonlinear mechanisms [11]-[13]. While it is well established that sound 

traveling parallel or anti-parallel to a moving medium is transmitted non-reciprocally [14], 

strong effects are typically achieved only when the velocity of the medium is large, or in 

highly resonant devices [15]-[16]. Based on this principle, momentum bias applied 

through moving media was recently used to realize linear acoustic non-reciprocal devices 

[17]-[18]. In the following, we explore moving metamaterials operated around their zero-

index operation, showing how in this scenario mechanical motion opens highly unusual 

scenarios for sound propagation. We unveil the underlying physical mechanism in 

presence of asymmetric Willis coupling, and use this feature to design a non-reciprocal 

lens which can realize focusing only from one side. 

A moving medium exhibits different wave-vectors k+  and k−  for opposite 

propagation directions, which is a signature of nonreciprocity. As such, the nonreciprocal 

parameter 

( ) ( ) ( ) ( )Re Re Re Rek k k kη + − + −= + −       (1) 



measures the degree of asymmetry in wave propagation for opposite directions. In 

absence of motion, k+  and k−  are necessarily the same in magnitude and with opposite 

signs, hence 0η = , while η is nonzero when reciprocity is broken. In a moving medium, 

in absence of frequency dispersion we can write [19],[20] 

R NRk k k± +±= , with ( )2
0 / 1Rk k M= − , ( )2

0 / 1NRk Mk M= − − ,   (2) 

where ,R NRk k  are the reciprocal and non-reciprocal portions of the wavenumber, 

respectively, 0 0/M U c=  is the Mach number, defined as the ratio of flow speed 0U  to 

the background sound speed 0c , and 0 0k cω=  is the wavenumber in free space. 

Replacing these quantities in (1) yields /NR Rk k Mη = = , implying that non-negligible 

non-reciprocity can be expected only for large, often impractical Mach numbers. 

In order to break this trade-off and achieve large non-reciprocity with small flow 

speed, we explore the regime for which 0Rk = , i.e., zero-index propagation, so that the 

non-reciprocal portion of the wave-number NRk  dominates. In electromagnetics, epsilon-

near-zero (ENZ) metamaterials [21]-[22] provide a reciprocal zero index of refraction, 

which has been shown to lead to extreme wave propagation properties [23]-[24]. 

Acoustic waves in a zero-index media may therefore provide a platform to boost 

nonreciprocal phenomena when modest medium speeds are considered. Density-near-

zero metamaterials [25]-[26], the analogue of ENZ materials for sound, have been 

realized in the past using waveguides loaded by membranes. However, this approach is 

not suitable for our purpose of realizing non-reciprocal wave transmission with the help 

of background flow, because conventional membranes would block the flow. We consider 



therefore extreme non-reciprocal responses by imparting air flow to waveguides loaded 

by a Helmholtz resonator array, inducing a near-zero refractive index at rest ( 0Rk ≈ ) 

[27], while 0NRk ≠ . In such a metamaterial, we expect that even a small mechanical 

motion yields a negative phase velocity (and refractive index) for propagation parallel to 

the fluid motion, and a positive one for propagation anti-parallel to it, hence 

/NR Rk k Mη = →∞ � . In the following, we verify this response for plane-wave 

incidence, observing opposite refraction angles for excitation from opposite sides.  

The geometry under analysis is shown in Fig. 1, and it consists of an array of parallel 

waveguides loaded with Helmholtz resonators. The green color indicates the region with 

air flow, and the geometrical parameters are provided in the caption. In order to impart air 

flow in each waveguide, a pipe is connected to both sides and loaded with a fan, (not 

shown in the figure), inducing a continuous air flow, as indicated by the arrows. To 

ensure that the incident acoustic wave only travels through the waveguide, we load two 

Helmholtz resonators at each pipe opening (not shown), designed to filter out the 

excitation frequencies. The structure is supplied with two matching layers at both sides 

(yellow color) in order to eliminate impedance mismatch, they do not support zero-index 

propagation, hence their width is compact. The lower inset of Fig. 1 shows the calculated 

Mach number along each waveguide, zero outside the moving segment, and which 

linearly increases to an approximately constant value of 0.1 (corresponding to a velocity 

of 34.3 m/s) inside the waveguide through a finite transition layer. The small fluctuations 

of Mach number inside the waveguide are due to the Helmholtz resonators [28]. All the 

details of the geometry under analysis are provided in Fig. 1. The focus of this paper is to 

show how moderate constant flow can induce extreme non-reciprocal wave propagation 



and asymmetric Willis coupling. To keep simplicity but without losing generality, the 

background flow simulation has been performed with COMSOL Multiphysics, 2D 

Poisson’s equation module [28]. The module solves 0 f∇⋅ =U , where f  and 0U  

correspond to the source term and background flow speed. Source terms are placed at 

both sides of each waveguide to model the inlet and outlet connections to the pipe in the 

z-direction. 

Consider now the excitation of this geometry with obliquely-incident plane waves 

from opposite sides, as shown in Fig. 2. The simulation is performed by COMSOL 

Multiphysics with Aeroacoustics Module in 2D [28] and the operation frequency is 11537 

Hz. The actual background flow obtained from the simulations using the Poisson’s 

equation Module is implemented into the Aeroacoustics Module to take into account the 

realistic medium flow in the waveguide. In our simulations, we use the continuity 

boundary conditions for acoustic pressure and particle velocity at the interface between 

the region with no motion and the matching layer, due to the material mismatch at these 

interfaces. At the interface between the region with no motion and the transition layer 

inside the waveguides, as well as at the one between the transition layer and the main 

body of the waveguide, we instead apply continuity boundary conditions for acoustic 

pressure and air mass flow [29]. Figure 2a presents the acoustic pressure field distribution 

for excitation from the left side. Due to momentum conservation, the tangential 

component of the wave-vector and transverse phase velocity is conserved, while the 

normal component changes direction across the interface, resulting in negative refraction. 

Quite interestingly, the situation is opposite for excitation from the right side: Figure 2(b) 

presents the acoustic fields for an incident wave coming from the right side at the same 



incident angle. In this case, the direction of the normal component of the wave-vector 

does not flip as the wave enters the metamaterial, indicating positive refraction. This 

drastically different refraction response from opposite sides for modest values of M is a 

signature of extreme nonreciprocity, arising from the slowly moving medium combined 

with the near-zero-index response in the metamaterial. Although the negative/positive 

phase index of the material is non-reciprocal, the energy velocity always flows away 

from the source, as expected from causality [30]. 

A better understanding of the phenomenon can be gained by extracting the effective 

constitutive parameters of the metamaterial. The mass conservation equation and 

momentum equation in each waveguide with air flow are derived in detail in [31], and 

take the general form 

( )1
eff effu x i E p uω ξ−∂ ∂ = +      (3) 

( )eff effp x i u pω ρ ς∂ ∂ = + ,    (4) 

where ( ) ( )1 1 1 2
0 / 1effE E F M− − −= − −  is the effective bulk modulus, ( )2

0 / 1eff Mρ ρ= −  is 

the effective density, 2
0 0 0E cρ=  is the bulk modulus in air, ( )1 2

0 / 1eff M c Mξ −= − −  and 

( ) ( )1 1 2
0 0 0 / 1eff M c F c Mς ρ − −= − −  are odd bianisotropy cross coupling coefficients 

arising from non-reciprocity, ( )2 2
0w aF S dM ω ω= −  is a factor that depends on the 

geometry of the structure, and 0ω , aM  are the Helmholtz resonator resonance angular 

frequency and acoustical mass, respectively. The dispersion of the effective parameters in 

Eqs. (3)-(4) versus frequency for the metamaterial geometry is shown in [31]. We stress 

that this effective medium model applies over a broad range of frequencies, not limited to 



the zero-index operation of the material, and it breaks down only when the wavelength in 

the material becomes comparable to the loading period. 

The material flow introduces strong asymmetry in sound propagation, inducing what is 

known as bianisotropy, a response that is highly anisotropic in nature, as it holds only for 

propagation along x, and at the same time couples together pressure and velocity through 

the Willis coupling terms effξ  and effς  [32]-[33]. The introduction of bianisotropy 

provides us an extra degree of freedom to control the sound propagation properties, 

especially relevant in the zero-index propagation regime. For a stationary waveguide 

loaded with Helmholtz resonators [34], which corresponds to our scenario in the limit of 

0M = , only the bulk modulus effE  is affected by the loads, yielding near-zero 1
effE− , 

corresponding to a zero index of refraction, when 1 1
0E F− −= . The effective density is not 

affected at all by the resonators. When a modest fluid motion is considered, however, the 

effective density and bulk modulus are weakly modified through the factor ( ) 121 M
−

− , 

but most importantly they are coupled together through the bianisotropy coefficients effξ  

and effς . Different from conventional Willis coupling [35]-[38], these coefficients do not 

obey reciprocity, eff effξ ς≠− , and are odd with respect to M , i.e., they flip sign for 

opposite propagation directions, a clear sign of non-reciprocity. As we show in [31], 

around the resonance of Helmholtz Resonator effς  goes through a resonance and flips 

sign, similar to effE , producing extremely asymmetric Willis coupling coefficients and 

non-reciprocal response. 

By combining Eqs. (3) and (4), we derive the dispersion relation 



( ) ( )2 14

2 2
eff eff eff eff eff effE

k
ω ξ ς ρ ω ξ ς−

±

− + +
= ± + ,    (5) 

yielding 

 ( ) ( )
2 21 1

2 1 10 0 0 0
0 02

4

2 1 2
eff eff eff eff

R

E k c c Fk M E F
M

ω ξ ς ρ ρ ρ
− −

− −
− + ⎛ ⎞

= = + −⎜ ⎟− ⎝ ⎠
       (6) 

( ) 2 1
0 0

0 2 1
2 1 2

eff eff
NR

c FMk k
M

ω ξ ς ρ −+ ⎛ ⎞
= = − −⎜ ⎟− ⎝ ⎠

.                               (7) 

Notice the strong difference between these expressions and Eq. (2), which is consistent 

with Eq. (5) in the limit 1 0F − = , i.e., without Helmholtz resonators. With the help of 

strong sound-matter interactions enabled by the metamaterial, we are able to realize zero-

index Rk  and at the same time, a non-negligible NRk . At 

( ) ( )2 2
0 01 1 2 w aM E S dMω ω= + + − , 0Rk = , and η →∞ , largely enhancing the 

non-reciprocal response, due to asymmetric Willis coupling induced by the mechanical 

motion. In this regime the wavenumber reads 

( )0 2 21 1 1
NR

Mk k k
M M

± = = −
+ − −

,   (8) 

enabling opposite refractive index for opposite directions of propagation. Interestingly, 

the wavenumber in the metamaterial has the same real value for both propagation 

directions, i.e., no matter whether the incident wave is coming from left or right, the 

wavevector has the same direction and value, anti-parallel to the fluid motion, consistent 

with our numerical simulations in Fig. 2. We stress that for 0Rk =  the effective bulk 

modulus is negative, ( ) ( )21 4eff eff eff effE ξ ς ρ− = − − , and the effective density positive, 



( )2
0 / 1eff Mρ ρ= − , yet the acoustic wave travels in the metamaterial without decay 

because of the strong Willis coupling response.  

Figure 3 shows the wavenumber dispersion in Eq. (5). In absence of air flow (M = 0), 

the dispersion has a cut-off at the zero-index condition 1 1
0E F− −= , and it is strictly even 

with respect to k, as expected from reciprocity. When a moderate air-flow is turned on (M 

= 0.1), the dispersion diagram is asymmetric, as expected for a nonreciprocal medium, 

and the cutoff frequency shifts down to ( ) ( )2 2
0 01 1 2 w aM E S dMω ω= + + − . Around 

this frequency, waves propagating in opposite directions have a nonzero (negative) 

wavenumber, independent of the propagation direction, and the non-reciprocity 

coefficient η is very large. While in this Letter zero-index is achieved at the waveguide 

cut-off, similar operation may be envisioned in other zero-index metamaterials, such as 

around Dirac points [39]-[41]. 

The non-reciprocal Willis coupling induced through mechanical motion in Eq. (5) 

can also be used to create a lens that focuses a source placed at one side, but with 

diverging properties when a source is placed on the other side. The focusing operation is 

achieved by imparting a phase shift across the structure that transforms a diverging 

circular wavefront to a converging one [31], which is achieved tailoring the air flow 

velocity across different channels to accumulate the required phase at each aperture. Our 

design is shown in Fig. 4(a), where we plot the relation between Mach number, 

maintained below 0.09 in each channel, and the channel number n, with n = 0 being the 

channel on the same axis as the source (y = 0). The air flow in each channel is symmetric 

with respect to the y-axis (i.e., for channels N and –N the air flow is the same), so we only 



show the imparted Mach number for positive n. Figure 4(b) shows the calculated acoustic 

pressure distribution when the sound source is located on the left of the lens: after 

travelling through the planar metamaterial, a focused image is constructed at the right 

side of the lens. Figure 4(c) presents instead the pressure distribution when the sound 

source is located at the right side of the lens: here we only get a divergent wave, 

demonstrating strong nonreciprocity with modest required flow velocities. The operation 

frequency here has been raised to 16 kHz to enhance the transmission for each different 

channel with different background flow. Operating away from the resonance frequency 

ensures that detuning each channel to achieve the desired phase pattern at the lens output 

does not affect the transmission amplitude through each channel, and that the response in 

time is very fast, as discussed in [31]. 

By adjusting the air flow in each channel, we can achieve different functionalities. In 

Figs. 4d-f we show a design that converts a point source to a plane wave only when the 

source is located on the right side of the metamaterial. Again, the relation between 

channel number and Mach number is presented in Fig. 4(d), while Figs. 4e-f show the 

acoustic pressure profile when the source is located at the two sides of the structure, 

highlighting again the strongly non-reciprocal response. 

In conclusion, we have presented here a Willis metamaterial operating near the zero-

index operation, yielding extreme non-reciprocal responses with modest air flow. These 

unusual acoustic properties are the result of a non-reciprocal bianisotropic response 

dominating the effective properties of the metamaterial, as the reciprocal response tends 

to zero. For this reason, even modest air flows can provide highly unusual responses, 

including opposite (positive-to-negative) refractive index for opposite propagation 



directions, and non-reciprocal lenses. Within the proposed Willis metamaterial, the air 

flow can be modulated in real-time to reconfigure the properties of the metamaterial, 

making it an exciting platform to control sound beyond the conventional limitations of 

natural materials. We envision a plethora of applications of these concepts, from 

ultrasound imaging to sonar technology, with possible extensions to the realm of 

phononics and surface acoustic waves. We also expect exciting opportunities stemming 

from the introduction of nonlinearities in this zero-index metamaterial platform [42], 

which may combine large non-reciprocity and Willis coupling, small direct linear 

responses and enhanced nonlinear interactions with sound. 
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Figures 

 

 

Fig. 1. Geometry of the nonreciprocal metamaterial, formed by an array of parallel 

waveguides loaded by Helmholtz resonators (green). A constant air flow inside the 

waveguides is generated by fans (red color and orange color indicate the flow inside the 

waveguide and the flow outside the x-y plane in the pipe, respectively). The waveguides 

have a width Sw=3 mm, a distance d=8 mm between neighboring resonators, which have 

a neck length l=0.5 mm, a neck width a=1 mm, a cavity length b=7 mm and a cavity 

width h=3.5 mm. Two sets indicate the Mach number distribution in the waveguide 

between two matching layers and the enlarged structure of our microstructures, 

respectively. 

 



 

Fig. 2. (a) Acoustic pressure distribution for an incident wave coming from the left. 

The yellow arrows indicate the wave vector in air and the green arrow indicates the wave 

vector in the metamaterial. (b) Acoustic pressure distribution for an incident wave 

coming from the right. 

 

 

Fig. 3. Dispersion diagram for the geometry of Fig. 1 calculated from Eq. (5). (a) Real 

part. (b) Imaginary part. 



 

Fig. 4. (a) Modulation of the Mach number in each channel to synthesize a focusing lens. 

(b) Acoustic pressure distribution when the source is located on the left side of the lens. A 

focused image is obtained on the right. (c) Acoustic pressure distribution when the source 

is located on the right of the lens. (d) Modulation of the Mach number to synthesize a 

point-source to plane wave converter. (e) Acoustic pressure distribution when the source 

is located on the right. A plane wave is induced on the left side. (f) Acoustic pressure 

distribution when the source is located on the left side. 


