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We study nonreciprocity in spatiotemporally modulated 1D resonator chains from the perspective
of equivalent 2D resonator arrays with a synthetic dimension and transverse synthetic electric and
magnetic fields. The synthetic fields are respectively related to temporal and spatial modulation
of the resonator chain, and we show that their combination can induce strong transmission non-
reciprocity, i.e. complete isolation with only a weak perturbative modulation. This nonreciprocal
effect is analogous to the Hall effect for charged particles. We experimentally implement chains of
2 and 3 spatiotemporally modulated resonators and measure over 58 dB of isolation contrast.

Reciprocity is a fundamental property of wave prop-
agation in linear, time-reversal symmetric systems that
implies invariance under a spatial inversion of inputs and
outputs [1, 2]. Due to this constraint, reciprocal sys-
tems cannot provide important functions such as source
protection [3] and directional signal routing [4], which
are critical to many electromagnetic, optic, and acoustic
applications. Reciprocity can be broken in linear sys-
tems biased with a vector quantity that is odd under
time-reversal [5, 6] such as a magnetic field [4, 7]. How-
ever, because nonreciprocal devices that require mag-
netic fields are often difficult to integrate into larger
systems, especially on-chip or in sensitive supercon-
ducting circuits, recent research has increasingly em-
ployed frequency-converting spatiotemporal modulation
to break reciprocity through directional scattering [8–22]
or amplification [23–25].

In this letter we study nonreciprocity in one-
dimensional (1D) chains of coupled photonic resonators
with spatiotemporally modulated resonance frequencies.
We use a synthetic-dimension description of the mod-
ulated resonator chains, which can be interpreted as
unmodulated 2D resonator arrays with a synthetic fre-
quency dimension [26]. The synthetic dimension holds
frequency-shifted copies of the original chain that are
equivalent to the sidebands produced by modulation.
This description is particularly useful because the fre-
quency and phase of the modulation become equivalent
to a “photonic gauge potential” with similar properties
to the electromagnetic vector-potential that couples to
charged particles [27–30]. This gauge potential can gen-
erate synthetic electric [31] and magnetic [15] fields for
photons in the resonator array, enabling a rich variety of
physical phenomena such as Bloch oscillations [31], topo-
logical insulators [29, 32, 33], and the Aharonov-Bohm
effect [12, 13].

Reciprocity can be broken in synthetic arrays having
a magnetic field, but doing so requires an additional
mirror-symmetry breaking in the frequency dimension
[29] since the synthetic magnetic field is always perpen-
dicular to the plane of the array. Previous work has relied
on additional elements such as filters [12, 13] or added
loss [29] to break this symmetry. Here we introduce a
new approach that uses a synthetic electric field to break
mirror symmetry in the frequency dimension. When a
synthetic magnetic field that breaks time-reversal sym-
metry is also present, the combination of the two syn-
thetic fields breaks transmission reciprocity. A major
advantage of this method is its simplicity: both synthetic
fields are generated from the same reconfigurable modu-
lation process, and the additional lossy elements required
in previous work [12, 13, 29] are unnecessary. This ef-
fect is analogous to the Hall effect for charged particles,
where perpendicular electric and magnetic fields induce
a current in the ~E × ~B direction [34]. We show that this
combination of synthetic fields can produce strong non-
reciprocity, i.e., complete isolation with a weak perturba-
tive modulation, when the both synthetic fields are tuned
to maximize their respective symmetry-breaking. We ex-
perimentally verify this concept using short chains of cou-
pled resonators implemented in microwave-frequency mi-
crostrip circuits, and observe greater than 58 dB (approx-
imately six orders of magnitude) of isolation contrast.

As an illustrative case, we first consider a chain of
two identical coupled resonators with intrinsic resonance
frequencies ω0, as illustrated in Fig. 1a. The coupling
rate between the resonators is λ, and each resonator is
also coupled to a port, forming a two-port coupled-cavity
waveguide. The resonance frequency of the resonators is
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FIG. 1. (a) A chain of two coupled resonators coupled to two
ports. The resonance frequencies ω0,n are time-varying as de-
scribed by Eq. (1). (b) Transmission, τ(ω), for the chain of
coupled resonators in the absence of modulation. Amplitude
(solid blue) and phase (dashed red) are shown separately. The
transmission phase is normalized to 0 at ω0. (c) Pictorial rep-

resentation of H using synthetic electric field ~E and magnetic
field ~B. The electric field generates a potential of ∓ωM on
the upper and lower chains respectively, and the magnetic
field generates a direction-dependent phase shift of φ around
each closed loop.

modulated sinusoidally with frequency ωM according to

ω0,1 = ω0 + β cos
(
ωM t

)
ω0,2 = ω0 + β cos

(
ωM t+ φ

)
.

(1)

The excitation amplitudes a1,2 of resonators 1 and 2 (left
and right circles in Fig. 1a, respectively) can be collected

in a vector |a(t)〉 =
[
a1(t), a2(t)

]T
. Following Ref. 35,

|a(t)〉 evolves in time according to

∂

∂t
|a(t)〉 = (iΩ0 + iΩ1(t)− Γ) |a(t)〉+ iKT |s+(t)〉 , (2)

where the system parameters are written as the matrices

Ω0 =

(
ω0 λ
λ ω0

)
, Γ =

(
γ 0
0 γ

)
, K =

(
k 0
0 k

)
,

Ω1(t) =

(
β cos(ωM t) 0

0 β cos(ωM t+ φ)

)
,

and |s+(t)〉 , |s−(t)〉 are vectors that respectively corre-
spond to the input and output amplitudes at the ports.
The coupling between the ports and resonators is de-
scribed by the coupling matrix K (k is the coupling con-
stant between a resonator and a port). The total decay
rates of the resonators are described by the matrix Γ
(γ is the decay rate of each resonator), which satisfies
2Γ = K†K + κ [35]. The K†K term accounts for the
fields decaying into the ports, while the diagonal matrix
κ accounts for any resistive or radiative losses in each
resonator. The output of the system can be written as

|s−(t)〉 = |s+(t)〉+ iK |a(t)〉 . (3)

Since the system is periodic in time with frequency
ωM , it is convenient to work in the frequency domain.
Using the Fourier transform |a(ω)〉 =

∫
dt |a(t)〉 e−iωt, in

steady-state Eq. (2) becomes

ω |a(ω)〉 = H0 |a(ω)〉+KT |s+(ω)〉
+B |a(ω − ωM )〉+B† |a(ω + ωM )〉 ,

(4)

where H0 = Ω0 + iΓ and B = β/2

(
1 0
0 eiφ

)
. The applied

modulation converts the input signal up and down in
frequency such that inputs with a single frequency will
generate infinitely many sidebands equally separated by
multiples of ±ωM . These sidebands are coupled to each
other through the B matrix. Thus, Eq. (4) is actually a
set of infinitely many equations that can be written as
[36]

ω |α(ω)〉 = H |α(ω)〉+KT |σ+(ω)〉 , (5)

where K is a block-diagonal matrix where each block is
K, and H is the block-tridiagonal matrix

H =



. . .
. . . 0 0 0

. . . H0 − ωMI2 B 0 0
0 B† H0 B 0

0 0 B† H0 + ωMI2
. . .

0 0 0
. . .

. . .


.

The amplitude vectors |α(ω)〉 and |σ±(ω)〉 are

|α(ω)〉 =



...
|a(ω + ωM )〉
|a(ω)〉

|a(ω − ωM )〉
...

 , |σ±(ω)〉 =



...
|s±(ω + ωM )〉
|s±(ω)〉

|s±(ω − ωM )〉
...

 .

The output of the system |σ−(ω)〉 can be found through
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the expression

|σ−(ω)〉 = |σ+(ω)〉+ iK |α(ω)〉 . (6)

The relation between the input and output of the sys-
tem is given by the expression |σ−(ω)〉 = S(ω) |σ+(ω)〉,
where the full scattering matrix S(ω) can be found by
solving Eqs. (5) and (6). However, the linear scattering
matrix S(ω) which only relates inputs and outputs at the
same frequency and satisfies |s−(ω)〉 = S(ω) |s+(ω)〉 is
typically more useful, especially if the input is monochro-
matic |σ+(ω)〉 = |s+(ω)〉. This simpler scattering matrix
can be found by using perturbation theory that ignores
sideband terms beyond a certain order in the squared
modulation amplitude β2. In order for a system to be
nonreciprocal, or different under an exchange of inputs
and outputs, the scattering matrix must be asymmetric
(S(ω) 6= ST (ω)). In the following analysis, we aim to
illustrate the origin of the linear nonreciprocal effect and
therefore solve for S(ω) by keeping only the first-order
sidebands (perturbation order β2) [37] and neglecting the
coupling between the sidebands and the ports.

The complex transmission function of the unmodu-
lated two-resonator chain described by H0, which can
be found by solving Eqs. (2) and (3) with Ω1 = 0, is

τ(ω) =
k2λ

[γ + i(ω − ω0)]2 + λ2
. (7)

The transmission amplitude and phase, shown in Fig.
1b, are respectively symmetric and anti-symmetric about
the center frequency ω0. As we will later show, the anti-
symmetry of the phase response is vital to breaking reci-
procity. There are two peaks in the transmission ampli-
tude, corresponding to the eigenmode frequencies ω0±λ.
Near these resonant frequencies, the transmission phase
is ≈ ∓π/2 relative to the transmission phase at ω0.

The modulated chain can be interpreted as a time-
invariant 2D array with a synthetic dimension arising in
frequency space. This array consists of the original chain
and two additional chains for each perturbation order
(one additional chain for each sideband). To first order,
the system consists of three unmodulated two-resonator
chains separated in frequency, as shown in Fig. 1c. The
coupling rate β/2 between neighboring chains/sidebands
is determined by the amplitude of the applied modula-
tion. We can capture the effects of the modulation fre-
quency and phase by introducing two synthetic fields -
an electric field ~E pointing parallel to the frequency axis,
and a magnetic field ~B pointing out of the 2D plane. The
electric field manifests as a potential gradient of ωM be-
tween the resonator chains, and is equivalent to the fre-
quency offset of the H0 matrix along the diagonal of H.
The magnetic field produces a magnetic flux that induces
a direction-dependent phase shift of φ in each plaquette
[12, 15], equivalent to the the phase term eiφ in the B

matrix. For simplicity, and because distance is not well
defined in the synthetic dimension, we adopt units where
|~E| = ωM and | ~B| = φ.

Transmission through the system shown in Fig. 1c can
be calculated as the sum of transmission through three
channels: the central channel with no potential offset, the
lower channel with a positive offset +ωM , and the upper
channel with a negative offset−ωM . The lower and upper
channels both enclose a synthetic magnetic flux which
induces an additional direction-dependent phase shift of
±φ, such that the total transmission, written as a sum
of symmetric and anti-symmetric parts, is

S21(ω) ≈ τ +
β2

4

(
[τ+ + τ−] cos(φ)− i[τ+ − τ−] sin(φ)

)
,

S12(ω) ≈ τ +
β2

4

(
[τ+ + τ−] cos(φ) + i[τ+ − τ−] sin(φ)

)
,

(8)

where τ = τ(ω) and τ± = τ(ω ± ωM ).
From Eq. (8), we find that the symmetric part of the

transmission is identical between S21 and S12 (i.e., is re-
ciprocal), while the anti-symmetric part differs (i.e., is
nonreciprocal). It is immediately clear that if either syn-
thetic field vanishes the system must be reciprocal, since
sin(φ = 0) = 0 and τ+ = τ− if ωM = 0. Furthermore,
the strongest nonreciprocal response will arise when both
ωM and φ are tuned such that transmission is maximally
anti-symmetric with respect to the sign of either quan-
tity. This occurs when the input frequency ω = ω0, the
synthetic flux φ = ±π/2, and the synthetic potential
ωM ≈ λ, such that the lower and upper paths are reso-
nant and respectively provide opposite ±π/2 phase shifts
due to the anti-symmetric phase of τ(ω). The resonance
of the lower and upper paths also maximizes the ampli-
tudes of τ± and therefore the β2 term of Eq. (8), further
increasing the nonreciprocal contrast.

The effect of the synthetic electric and magnetic fields
can be interpreted as a Hall effect for photons. In the or-
dinary Hall effect, current flows perpendicular to applied
electric and magnetic fields because the combination of
fields exerts a force that makes it more favorable for elec-
trons to move in one direction. Here, the same combina-
tion of fields makes it more favorable for photons to move
in one direction, leading to transmission nonreciprocity.
This effect is resonantly enhanced in our system, leading
to a strong nonreciprocal contrast.

To test these predictions we implemented a chain of
two coupled resonators with modulated resonance fre-
quencies in a microwave circuit using microstrip stub res-
onators, as pictured in Fig. 2a (see Supplement S4 for
additional details). Each resonator has an initial loaded
resonance frequency ω0/2π ≈ 1.35 GHz and is termi-
nated in a varactor diode that modulates the resonance
frequency in response to an applied voltage. We used
external tunable phase shifters to control the phase shift
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FIG. 2. (a) Photograph of the experimental circuit imple-
menting two coupled resonators with variable resonance fre-
quencies. The bias ports are used to apply a voltage to the
varactor diodes (white boxes) and thereby modulate the reso-
nant frequency. (b, left) Measured isolation contrast at ω0 as a
function of ωM and φ. (b, right) Measured forward and back-
ward transmission amplitude at ωM/2π = 48 MHz, which
corresponds to the dashed line on the left. (c) Measured and
fitted power transmission for the circuit in (a), with ωM ≈ λ,
φ = π/2, and β tuned to minimize forward transmission am-
plitude.

φ between the sinusoidal voltage biases applied to the
resonators.

We first swept the amplitudes of the synthetic fields
(by adjusting the modulation frequency and phase) to
find the values that produce the strongest nonreciproc-
ity. Fig. 2b shows the measured isolation contrast for an
input frequency of ω0 as a function of the synthetic po-
tential ωM ∝ ~E and synthetic magnetic flux φ ∝ ~B. As
predicted, the contrast is maximized near specific values
of these parameters: ωM/2π ≈ λ/2π ≈ 48 MHz, and

φ ≈ π/2. The frequency dependence of the circuit com-
ponents produce an additional asymmetry, not accounted
for in our model which has frequency-independent pa-
rameters, that shifts the maximum contrast to ωM/2π =
53 MHz. The measured transmission amplitude for an
input at ω0 is shown in Fig. 2b for ωM/2π = 48 MHz.
There is good agreement between the measured trans-
mission and theoretically calculated transmission. This
experiment also clearly demonstrates that the synthetic
electric and magnetic fields work together to produce a
strong nonreciprocal response. The measured transmis-
sion with no synthetic flux (φ = 0) is fully reciprocal, and
the isolation contrast decreases as the synthetic potential
moves away from ωM ≈ λ ≈ 48 MHz, as expected.

Next we increased the modulation amplitude to mini-
mize the transmission amplitude in the forward direction
(S21 ≈ 0) while maximizing isolation contrast. Figure 2c
shows the measured and calculated values of the power
transmission, |S12(ω)|2 and |S21(ω)|2, under modulation
with this critical amplitude. Here, the modulation fre-
quency has been increased to ωM/2π = 53 MHz in order
to maximize the contrast. The measured forward trans-
mission approaches zero (≈ −79 dB) at ω0 and measured
isolation contrast at ω0 is > 64 dB. The calculated trans-
mission matches the measured data well and the result
is consistent with the prediction of Eq. (8). We note
that the spectral asymmetry in the experimental data
is caused by the frequency dependent coupling rate of
the capacitors, which is not included in the theoretical
model.

The synthetic electric and magnetic field interpretation
of a modulated resonator chain can be extended to chains
of an arbitrary length. The form of H remains the same
regardless of chain length, only the inner matrices H0

and B change to accommodate more resonators. A de-
tailed explanation of the coupled-mode theory for longer
modulated chains is provided in the Supplement S1.

Since all resonator chains have an anti-symmetric
phase response about their center frequency, a combi-
nation of synthetic electric and magnetic fields can break
reciprocity in a chain of any length through the nonrecip-
rocal mechanism that we have identified. The outermost
eigenmodes of resonator chains always follow the pattern
found in the two-resonator chain: the phase difference
between adjacent resonators, relative to the phase differ-
ence at ω0, is +π/2 for the lowest-frequency mode and
−π/2 for the highest mode. Strong transmission nonre-
ciprocity will occur for inputs at the center frequency ω0

when the synthetic flux φ = π/2 and the synthetic po-
tential ωM = ∆ω, where ∆ω is the frequency separation
between the outermost eigenmodes and the center fre-
quency. In the shortest case of two resonators ∆ω = λ,
but as the chain length increases ∆ω → 2λ. A theo-
retical analysis of how this mechanism works in a three-
resonator chain is provided in the Supplement S2.

We implemented a longer chain of three modulated res-
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FIG. 3. (a) Measured and fitted power transmission for the
three-resonator chain, with ωM = ∆ω, φ = π/2, and β tuned
to minimize forward transmission amplitude. (b) Calculated
transmission for an 8 resonator chain under modulation with
ωM = ∆ω, φ = π/2, and β tuned to minimize forward trans-
mission amplitude. (c) Calculated transmission for a 13 res-
onator chain under modulation with ωM = ∆ω, φ = π/2, and
β tuned to minimize forward transmission amplitude.

onators using three microstrip resonators with voltage-
controlled resonance frequencies (photo in Supplement
S2). Here, each resonator has an initial loaded resonance
frequency ω0 ≈ 1.32 GHz. The measured and calculated
transmission spectra are shown in Fig. 3a for φ = π/2
and ωM/2π = ∆ω/2π ≈ 141 MHz, where the modula-
tion amplitude is tuned to minimize the forward trans-
mission amplitude. As in the two-resonator chain, the
measured forward transmission near ω0 approaches zero
(≈ −80 dB), and there is strong nonreciprocal contrast
(≈ 59 dB).

We also simulated longer chains using the coupled-
mode theory model with intrinsic resonator linewidth κ,
λ = 10κ, k = 2

√
κ, φ = π/2, and keeping sideband

terms up to ±5ωM . As the chain length increases, the
number of eigenmodes of the chain increases proportion-
ally, eventually forming a flat passband around ω0 as
the modes overlap due to their finite linewidth. Addi-
tionally, the backward transmission (insertion loss) ap-
proaches the reciprocal transmission of an unmodulated
resonator chain (see Supplement S3B for more detail on

insertion loss). We plot the forward (S21) and backward
(S12) transmission spectra for chains of 8 and 13 res-
onators under modulation with φ = π/2, ωM = ∆ω,
and β tuned to minimize S21(ω0) in Fig. 3b,c. Despite
the increased number of eigenmodes forming a passband
instead of discrete resonances, the major nonreciprocal
feature remains the large nonreciprocal dip near ω0. The
spectrum is approximately reciprocal between the cen-
tral frequency and the band edges, indicating that the
main nonreciprocal mechanism is the first-order process
related to the anti-symmetric eigenmodes. Accordingly,
the bandwidth of the nonreciprocity is primarily deter-
mined by the linewidth of these two modes. However, we
note that the bandwidth is also influenced by the mod-
ulation frequency, amplitude, and phase, such that no
simple expression relates it to the mode linewidth (see
Supplement S3A for more detail).

The synthetic field interpretation of spatiotemporal
modulation discussed here can be directly applied to a
wide variety of nonreciprocal systems [9, 11–15, 20]. Ad-
ditionally, the nonreciprocal mechanism we proposed is
general and can be realized without added filters in any
system of coupled resonators with the appropriate anti-
symmetric modes, including chains of coupled photonic
or electronic crystal defects. Since resonance frequency
modulation is practical across a variety of resonator types
[14, 38–40], the proposed method for generating strong
nonreciprocity can be implemented across domains, in
optical, microwave, or mechanical resonators. Further-
more, analogous modulation schemes that make use of
both the lower and upper sidebands could also be real-
ized using other methods of modulation, such as with
Josephson parametric converters [8, 41, 42].
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