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Dissipation can usually induce detrimental decoherence in a quantum system. However, engineered dissipa-
tion can be used to prepare and stabilize coherent quantum many-body states. Here, we show that by engineering
dissipators containing photon pair operators, one can stabilize an exotic dark state, which is a condensate of pho-
ton pairs with a phase-nematic order. In this system, the usual superfluid order parameter, i.e. single-photon
correlation, is absent, while the photon pair correlation exhibits long-range order. Although the dark state is not
unique due to multiple parity sectors, we devise an additional type of dissipators to stabilize the dark state in
a particular parity sector via a diffusive annihilation process which obeys Glauber dynamics in an Ising model.
Furthermore, we propose an implementation of these photon-pair dissipators in circuit-QED architecture.

With the rapid development of quantum optical technol-
ogy and quantum information platforms such as cavity/circuit
quantum electrodynamics (QED) [1–3] and Rydberg polari-
tons [4], it is now possible to investigate strongly-correlated
many-body physics of photons [3, 5–8]. While photons can
have strong interactions in these platforms, they do not nat-
urally thermalize, and one has to synthesize thermalization
and a chemical potential to obtain many-body ground states
[9–14]. Remarkably, dissipation induced by the environment,
which is usually regarded as a noise source leading to de-
coherence of the states, can actually become a useful re-
source. If harnessed properly, dissipation can be used to au-
tonomously prepare and stabilize an exotic many-body pure
state as the steady/dark state of a system [15–28]. In the
context of analogue quantum simulation, some well-known
examples of dissipative engineering schemes include the au-
tonomous preparation and stabilization of the Bose-Einstein
condensate (BEC) state [16], the Majorana-fermion state [22]
and the Chern insulator state [26], all of which can be thought
as the ground states of non-interacting Hamiltonians. In a dig-
ital quantum simulation scheme [29–31], a class of jump op-
erators has been realized [19, 32, 33], where the steady states
correspond to the ground states of a specific class of interact-
ing Hamiltonians.

Meanwhile, there have been significant experimental
achievements in engineering analogue dissipators with higher-
order photon jumps in small circuit-QED systems [34–40].
While these efforts have been motivated by autonomous error
correction for a single- or two-sites system, it is interesting to
investigate engineering many-body states, using these tools.
Specifically, one can ask whether a strongly-correlated pure
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FIG. 1: (a) Illustration of the dissipative process described by the
photon pair jump operator. (b) The U(1) phase variable φ j (illustrated
by the arrows) in the photon pair condensate is disordered due to the
freedom to fluctuate by π. (c) Twice of the U(1) phase angle 2φ j

(illustrated by the rod) is ordered, corresponding to a phase-nematic
order.

many-body state can be stabilized with an engineered ana-
logue dissipator? In this Letter, we answer this question by
proposing a type of two-photon jump operator which can dis-
sipatively prepare and stabilize an exotic strongly correlated
photon-pair condensate exhibiting phase-nematic order. Fur-
thermore, we propose an analogue experimental realization
with circuit-QED systems. The added benefit of this approach
is that one does not require effective thermalization or gener-
ation of a chemical potential in a photonic system.

In order to illustrate the key idea, we start with a canon-
ical example of Ref. [16]. For an open quantum system
with Markovian environment, the system dynamics can be de-
scribed by the Lindblad master equation:

d
dt
ρ = −i[H, ρ] +Lρ, (1)

where H is the Hamiltonian of the system and the Liouvil-
lian Lρ =

∑
j κ j(2l jρl†j − l†j l jρ − ρl†j l j) describes the dissipa-

tion associated with the jump operator l j with decay rate κ j.
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Consider the dynamics of bosonic particles on 1-dimensional
lattice with H = 0 and a number-conserving jump operator of
the form l j=(a†j + a†j+1)(a j − a j+1), connecting nearest neigh-

bors in the lattice, where a†j is the boson creation operator on
site j. These jump operators stabilize a BEC with fixed num-
ber of particles, i.e., a pure dark state |D 〉 = (a†k=0)Ntot | 0 〉 ∝(∑

j a†j
)Ntot | 0 〉, where Ntot is the total number of bosons. A

simple way to understand these jump operators is the mean-
field picture in which a j →

√
n̄eiφ j , where φ j represents the

compact U(1) phase variable (mod 2π).
The dark-state condition l j|D 〉 = 0 gives rise to the mean-

field solution: φ j+1 − φ j = 0 (mod 2π), suggesting a phase
locking between neighboring sites. In this case, the dark state

has long-range order, i.e., 〈a†i a j〉
|i− j|→∞

======⇒ 〈a†i 〉〈a j〉 = n̄, where
we have introduced mean-field order parameter 〈a j〉 ≈

√
n̄〈eiφ〉

and φ is the uniform phase, after the spontaneous breaking of
a U(1) symmetry. While this order parameter is fragile in 1D,
these ideas can be generalized to higher dimensions where the
long-range order can become robust.

Pair jump operators.— In this work, we propose a quartic
jump operator connecting site j and j + 1 of the form

l j = (a†2j + a†2j+1)(a2
j − a2

j+1), (2)

in a 1D lattice, as shown in Fig. 1(a). This can be generalized
to 2D and 3D by assigning a jump on each link of the lattice.
Before deriving the exact form of the wave function, we con-
sider a mean-field solution in which we take a j →

√
n̄eiφ j .

The dark-state condition l j|D 〉 = 0 hence gives rise to the
mean-field solution: 2(φ j+1 − φ j) = 0 (mod 2π), suggest-
ing a locking of twice the phase variables between neigh-
boring sites. This leads to the mean-field order parameter
〈a2

j〉 = n̄〈e2iφ j〉 rather than 〈a j〉, as in the previous case. In
fact, we now have 〈a j〉 = 0. For correlation functions, we get

〈a†2i a2
j〉
|i− j|→∞

======⇒ 〈a†2i 〉〈a
2
j〉 = n̄2〈ei2(φi−φ j)〉 = n̄2,

〈a†i a j〉 = n̄〈ei(φi−φ j)〉 = n̄〈ei(φi−φ j)+π〉 = −〈a†i a j〉 = 0, (3)

for i , j. While (2φ j) exhibits long-range order, φ j does not
since φ j can flip by π and still satisfy the dark-state condition
[c.f. Fig. 1(b,c)]. This photon pair condensate exhibits phase-
nematic order. A similar state has been studied in the con-
text of Josephson junction arrays [41],the symmetry breaking
phase of a photon pair hopping Hamiltonian [42] and frag-
mented many-body state in the ultra-cold atomic system [43–
45]. The oriented rods without an arrow head in Fig. 1(c) rep-
resent the local order parameter 〈ei2φ j〉 for such a state, which
does not differentiate the π-phase flip of φ j and corresponds to
the spontaneous breaking of a U(1)/Z2 symmetry.

Exact solutions.— For the system where the Hamiltonian
H = 0 and the jump operator is described in Eq. (2).The
steady state density matrix is given by ρss = |D 〉〈D | where
|D 〉 is annihilated by the jump operators in Eq. (2) satisfying
l j|D 〉 = 0.

We find that the dark state |D2n 〉 can be described as a con-
densate of n two-photon bound states:

|D2n 〉 ∝ A†n| 0 〉, (4)

where A† =
∑

j a†2j (n j + 1)−1 [58] is the creation opera-
tor of quasi-particles related to photon pair bound state and
n j = a†ja j is the on-site number operator. Note that the ex-
tra normalization factor (n j + 1)−1 in the definition creation
operator A† only affects the relative weights of different pho-
ton pair spatial configurations, but not the essence of the pair
condensation.

One can easily see that the single-particle correlator 〈a†i a j〉

(for i , j) vanishes because ai|D2n 〉 and a j|D2n 〉 have zero
overlap since the photon occupation on site i and j becomes
odd respectively. On the other hand, the pair correlation
〈a†2i a2

j〉 is flat since a2
i |D2n 〉=a2

j |D2n 〉 ∝ |D2(n−1) 〉 due to the
fact that taking a pair out of the condensate at any site results
in the same condensate with n − 1 pairs of photons. This is
just a manifestation of the definition of a pair condensate.

We numerically simulate the time-dependent master equa-
tion Eq. (1) for an open 1D chain via quantum trajectory
method with time-evolving block decimation (TEBD) algo-
rithm [46, 47], with results shown in Fig. 2. We start with a
product Fock state | 2, 0, 2, 0, ... 〉, and the jump operator drives
the system to the steady (dark) state. We see from Fig. 2(a)
that the single-particle correlation function 〈a†L/4aL/4+10〉 re-
mains zero at all times, while the pair correlation function
〈a†2L/4a2

L/4+10〉 grows rapidly with an exponential saturation un-
til reaching the steady state. The whole time evolution resem-
bles a cooling process. The cooling time is independent of the
system size, as seen in the plot where the total number of sites
is varied as L = 16, 24, 32. The exponential saturation behav-
ior and the cooling time is manifest on a logarithmic scale, see
Fig. 2(b).

We also plot the pair correlators as a function of the distance
between two sites, i.e., 〈a†2L/4a2

L/4+ j〉 versus time t, as shown in
Fig. 2(c). We see that the state has almost flat correlation when
reaching the dark state, consistent with the prediction from
the analytical solution shown above. Before reaching the dark
state, the correlator is not flat and decays with distance. This
is due to the fact that correlation between more distant sites
needs more time to be built up. Fig. 2(d) shows the equilib-
rium time Teq as function of distance. The equilibrium time
Teq is defined as the time it takes for the correlator 〈a†2L/4a2

L/4+ j〉

to reach 80% of its steady state value. The spreading of the
correlation function follows the Lieb-Robinson light cone be-
heavior. In addition, we have observed that the introduction
of a Kerr non-linearity in the form H = Ua†2j a2

j in the sys-
tem Hamiltonian leads to an exponential decay of correlator
(in 1D) as a function of the distance j−1. The decay becomes
faster increasing U.

Parity sectors.—The above analytical and numerical analy-
ses only consider a simplified situation where the initial con-
dition has all even number of photons. We note that even for
fixed total photon number, the dark-state subspace has exten-
sive degeneracies 2L−1. (L is the number of sites), labeled by
the local parity P j = (−1)n j on each site. The exact wave
function we wrote down above in Eq. (4) is only the exact
wave function for the sector where the parities of all sites are
all even, i.e., P j = 1 for all j, which we call a “pure pair con-
densate”. On top of that, there are odd-parity “defects”, which
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FIG. 2: (a) Time evolution of single-photon and photon pair
correlators as a function of time with various system size L.
The average photon density n̄ = 1. (b) Time evolution of
〈a†L/4

2
(t=∞)a2

L/4+10(t=∞)〉−〈a†L/4
2
(t)a2

L/4+10(t)〉. Exponential satura-
tion of the pair correlators (plotted in log scale) shows the dark-state
cooling time is independent of system size. (c) Pair correlation func-
tion as a function of distance and time for L = 32 . The unit of time
is κ−1. (d) Equilibrium time Teq as function of distance j. The linear
dependence of the equilibrium time as function distance is due to the
finite propagation speed of entanglement.

are created in pairs from the pure pair condensate.
The wave function of a particular defect configuration can

be given by |D′nd
〉 ∝

∏2nd
i=1 a′†di

|D2(n−nd) 〉, where nd denotes the
number of pairs of odd-parity defects and their positions are
labeled by di. Several solutions of the parity-sector problem
are discussed as follows.

To begin with, we note that the different parity sectors are
not coupled together via the jump operators. Similar to what
has been considered in the numerical simulation in Fig. 2, one
can start with an initial product state in the all-even sector
(easy to prepare experimentally with pulses in the presence of
onsite nonlinearity). In this case, the jump operator will only
drive the system to the dark state |D2n 〉 in Eq. (4), in the ab-
sence of unwanted noise. We note that noise is always present
in experimental systems which either brings the state to dif-
ferent sectors. Therefore, one only expects to prepare the tar-
geting dark state with the jump operators before the unwanted
decoherence dominates. If one aims to stabilize the dark state,
extra measurement or stabilizing schemes are needed as dis-
cussed below.

A more general solution is: by imposing measurement and
feedback operation on the parity of each site, i.e., P j = (−1)n j ,
it is possible to keep projecting the many-body state to a par-
ticular parity sector. A jump operator describing such mea-
surement and feedback operation to stabilize parity-all-even
sector is

c j = Γ(a†j+1a j + a†j−1a j)
(

1 − P j

2

)
, (5)

where Γ is the hopping rate. Note that this jump operator ap-
plies a hopping term connecting that particular site to its near-
est neighbors conditioned by the the parity on the particular
site being odd. It causes the odd-parity defect to take a random
walk and eventually annihilate with another parity defect, as

dirty 1 5 10 50 100 500
0.01

0.05

0.10

0.50

II. pair production of defects by noise

III.random walk and pair annihilation of defects

(a) (b)

(c) Fitting function:

(d)

0 10 20 30 40 50 600.0

0.1

0.2

0.3

0.4

0.5

ideal

healed

Monte Carlo (classical)
TEBD (quantum)

FIG. 3: (a) Illustration: I. particular odd parity defect (blue bars)
configuration; II. pair production of defects from single-photon hop-
ping noise; III. random walk of defects due to conditional hopping,
and the induced pair annihilation process of defects (healing). (b)
Defect density (m) as a function of time (t). Classical Monte Carlo
simulation (solid) with L = 100 sites and quantum trajectory with
matrix product state simulation (dot-dashed) with L = 30 sites of the
time evolution of the average defect density. (c) Log-log plot of the
classical Monte carlo simulation (solid) for L = 100, with the fit-
ted curves (dashed) showing the asymptotic power-law scaling m(t)
∼ (Γt)−1/2. (d) Pair-correlators normalized with the average photon
density n̄ = 0.5 at different system size L = 16, 24, 32 in the situa-
tions: i. ideal (no noise); ii. dirty case (with noise but no healing);
iii. healed case (with noise and healing).

illustrated in Fig. 3(a). This diffusive defect annihilation pro-
cess resembles a chemical reaction described by the formula:
df + df → 0, where df stands for a single defect. Therefore,
no defect will exist in the steady state if the total photon num-
ber is even (2n), and so the steady state becomes a pure pair
condensate. We call such a process “healing”.

Since the parity measurement at time t + dt will post-select
the direction (left or right) to which the defect has hopped at
time t, the defect dynamics can be exactly mapped to a classi-
cal stochastic dynamics of the diffusive annihialation problem.
For a 1D chain, the dynamics of defect density exhibits power
law decay: m(t) ∼ =(Γt)−1/2 [48, 49]

The classical Monte Carlo simulation (with 100 sites) of
the time evolution of the average defect density m(t) quanti-
tatively agrees with the quantum TEBD simulation (with 30
sites) for a 1D chain, as shown in Fig. 3(b). The former is
plotted in a log-log scale in Fig. 3(c), where the associted fit-
ting curves confirms an asymptotic power-law m(t) ∼ (Γt)−1/2.
We have checked in both types of simulations that the time
evolution of m(t) is almost independent of system size.

In the presence of additional noise, such as incoher-
ent single-photon hopping described by the jump operator
l′j=a†ja j+1, there exists a finite defect production rate Γh. The
defect production can be balanced by the diffusive defect an-
nihilation process with hopping rate Γ, and the defect density
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FIG. 4: Proposed circuit-QED setup. (a) Two high-Q cavities at fre-
quencyωc and an three-level anharmonic oscillator(| g 〉, | e 〉 and | f 〉)
coupled to the Josephson junction modes JL and JR. Both of the
Josephson junction modes are driven by a two-tone drive with fre-
quency ωr and ωb. (b) Process (I) shows a pairs of cavity photons
combine with a driving ωr to produce a virtual junction excitation
g → e. The effective coupling is given by (a2

L − a2
R)| e 〉〈 g |. The

minus sign in the effective coupling comes from the relative phase of
the Rabi frequency Ωr as shown in (a). Process (II) gives the effective
coupling (a†2L + a†2R )| f 〉〈 e |. These two virtual processes are detuned
from the respective resonance condition by a frequency δ. The com-
bination of these two processes yields the desired interaction.

approaches a residual steady-state density ms with a character-
istic relaxation time τ. We have the following scaling (when
h � 1): ms ∼ h1/δ and τ ∼ Γ−1h−∆ [48]. Note that even a
large hopping rate Γ cannot reduce the steady-state density ms,
but only the healing time τ. A generic scaling law ∆ξ = 1/δ
should be satisfied [50]. For a 1D chain, we have δ = 2 and
∆ = 1 [59].

In Fig. 3(d), we use TEBD to calculate the steady-state pair
correlators 〈a†2L/4a2

L/4+ j〉 for system sizes L = 16, 24, 32, in the
following situations: i. ideal case (no noise: h = 0); ii. dirty
case (in the presence of single photon hopping noise: h >
0, without healing: Γ = 0); iii. healed case (with noise and
healing: h,Γ > 0). We see that in the presence of noise which
proliferate the parity defects, the steady state ends up with a
mixed state and the correlators decays exponentially, while the
healing process significantly slows down the decay.

Due to the complexity of the parity operator, one typically
can only realize such a jump operator with an active parity
measurement in circuit-QED setup through either continuous
[51] or discretized repeated [52, 53] measurement schemes,
instead of using continuous autonomous stabilization. Never-
theless, in the situation that we first impose hard-core condi-
tion for occupation more than three photons, i.e., a†3j = 0, the
parity condition can be simply converted to occupation con-
dition, and we can effectively re-express the jump operator in
Eq. (5) as c′j=(a†ja j+1+H.c.)n j(n j − 2), up to a constant factor
of 2. This jump operator can potentially be implemented con-
tinuously and hence autonomously stabilize the targeting pure
photon pair condensate. Similarly, one can either actively or
autonomously monitor and stabilize the total photon number
in the system.

Finally, we can also passively stabilize the parity sector via
energetic constraint in the case of hard-core condition a†3

j = 0.
This is achieved by assign the following energy penalty term
δH = −V0n j(n j − 2) in the Hamiltonian H [54]. Therefore,
the configuration with single-photon occupation (odd parity)

on any site is projected out of the low-energy sector.
Experimental realization with Circuit QED.—We illus-

trate the experimental scheme with a two-site jump opera-
tor l=(a†2L + a†2R )(a2

L − a2
R). The generalization to a 1D chain

is straightforward. Consider a system consisting of the two
high Q cavities aL and aR, and an anharmonic oscillator.
The anharmonic oscillator is modeled by a three-level sys-
tem (| g 〉, | e 〉 and | f 〉) and is coupled to a cavity aλ and a
Josephson junction mode Jλ, where λ = L,R, at both sides
respectively. Both junction modes are driven by a two-tone
drive Ωλ(t) = Ωλ,reiωr t + Ωλ,beiωbt as shown in Fig. 4.

We engineer a two-photon jump operator via four-wave
mixing induced from the junction modes JL and JR. The drive
ωr (ωb) is used to introduce an exchange of two photons of
cavity mode a2

λ (a†2λ ) with the excitation g → e (e → f ).
The four-wave mixing interaction of the pump ωr (ωb) is pro-
portional to

∑
λ Ωλ,ra2

λ| e 〉〈 g | (
∑
λ Ωλ,ba†2λ | f 〉〈 e |). The minus

sign in the jump operator can be engineered by introducing a π
phase shift between ΩL,r and ΩR,r. The effective Hamiltonian
is of the form

H′ = −
χ

2

∑
λ=L,R

a†2λ a2
λ + g1T−| e 〉〈 g | + g2T †+| f 〉〈 e | + h.c.

where T± = a2
L ± a2

R, χ is the Kerr nonlinearity induced from
the junction modes and g1 (g2) is proportional to the Rabi fre-
quency Ωr (Ωb) as shown in Fig. 4a.

To obtain the jump operator in Eq. (2), we combine the
two-photon loss process (T−) and two-photon creation process
(T †+) in equation above. We can achieve this by detuning the
two four-wave mixing processes by δ as shown in Fig. 4b so
that only a cascade of two such processes is possible [39]. The
detunning δ � g1, g2 allows a two-photon exchange processes
via a Raman transition. The effective Hamiltonian becomes

Heff = −
χ

2

∑
λ=L,R

a†2λ a2
λ +

1
δ

[
|g2|

2T †+T+ g1g2T †+T−
g∗1g∗2T †−T+ |g1|

2T †−T−

]
(6)

where the 2 × 2 matrix acts on the anharmonic oscillator basis
{| f 〉, | g 〉}. In Eq. (6), the term T †+T−| f 〉〈 g | gives the desired
two-photon process coupled to g ↔ f transition. Assuming
the decay rate(κ) of process f → g is much greater than all
of the other coupling constant in Eq. (6). The system can be
described Hs = −

χ
2
∑
λ=L,R a†2λ a2

λ +
|g1 |

2

δ
(a†2L − a†2R )(a2

L − a2
R) and

the jump operator ls =

√
2
κ

g1g2
δ

(a†2L + a†2R )(a2
L − a2

R). The jump
operator gives rise to Eq. (1) for the array case. The self-Kerr
and the cross-Kerr nonlinearity terms in Hamiltonian Hs can
be eliminated by adding an extra pair of Josephson junction
and a two-level system [60].

Conclusion and outlook.— We have discovered a photon
pair jump operator which can dissipatively prepare and stabi-
lize an exotic two-photon pair-condensate with phase-nematic
order, with a circuit-QED implementation. We have further
proposed a conditional hopping operator to stabilize the dark
state in a particular parity sector. Such a scheme can also
be realized with Rydberg polaritons or ion-trap systems. An
interesting future direction would be using such higher-order
dissipators for autonomous quantum error correction using
bosonic codes.
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