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Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy

We explore many-body entanglement in spinful Fermi gases with short-range interactions, for
metrology purposes. We characterize the emerging quantum phases via Density-Matrix Renormal-
ization Group simulations and quantify their entanglement content for metrological usability via the
Quantum Fisher Information (QFI). Our study establishes a method, promoting the QFI to be an
order parameter. Short-range interactions reveal to build up metrologically promising entanglement
in the XY-ferromagnetic and cluster ordering, the cluster physics being unexplored so far.

Strongly-correlated systems are progressively becom-
ing a paradigm for precision metrology, attracting broad
interest [1]. Quantum gases represent a powerful plat-
form to develop quantum measurement devices [2, 3],
bridging between engineering of quantum states of mat-
ter [4] and progress in atom interferometry [5, 6]. Atom
interferometry has many sources of uncertainty, classifi-
able into device and statistics-driven causes [7]. Accurate
experimental schemes have blossomed, providing signif-
icant reduction of the former, now comparable or even
lower than statistical error [7–12]. Further precision im-
provements can be obtained by addressing the statistical
uncertainty problem, in particular the quantum phase
estimation [13, 14]. A conceptual tool to reduce statis-
tical uncertainty may come from entanglement, specifi-
cally quantum squeezing [15–18], where uncertainty in a
selected observable can be reduced below the Heisenberg
bound at expenses of a conjugate observable [19]. Atomic
spin squeezing has been implemented in numerous exper-
imental setups, using interactions either collision-driven
or light-mediated in optical cavities [15, 20–23].

Entanglement is a necessary but not sufficient con-
dition for squeezing, its metrological usefulness being
quantified via the Quantum Fisher Information (QFI)
from Cramér-Rao bound for statistical estimation of vari-
ances [1, 14, 26]. Generation of useful entanglement is
often performed by means of infinite-range interactions
[15, 27, 28], and can survive a power-law decay of the
coupling [29]. However, also many-body finite-range in-
teractions can drive long-range correlations, reinforcing
the need to account for particles indistinguishability [30]
and making the quantification of entanglement an even
more subtle issue, as witnessed by a timely debate [31–
34] in both quantum information and many-body com-
munities, also motivated by experimental observations in
quantum gases [35]. The interesting question thus arises,
whether short-range interactions can provide phases with
useful entanglement content for metrology.
In this Letter, we tackle the problem from a concep-
tual perspective and investigate many-body entangle-
ment via a minimal model able to reproduce the essen-
tial desirable features of a strongly-correlated quantum
fluid with short-range interactions and motional degrees

FIG. 1: (Color online) System concept. Top. The tUJ
Hamiltonian (1): t drives the hopping, U the on-site inter-
action and J the spin-exchange coupling. Bottom. Qualita-
tive phase diagram at quarter filling in the U/t-J/t parame-
ter space, including the following phases: Luttinger-Liquid
(LL), Superfluid (SF), Charge-Density-Wave-like (CDW),
Spin-Density-Wave (SDWx,y,z), XY Ferromagnetic (XY-
FM), Clusters with internal XY-FM or antiferromagnetic
(AFM) spin ordering, and hemmed clusters (HC) (see text
for descriptions). Simulations have been performed along the
solid lines. Thick solid straight lines: |J/U | = 1. Thick
curves: guidelines delimiting cluster phases. As U → +∞,
Jc ' 3.8 separates AFM-like SDWx,y and XY-AFM Cluster
phases, while Jc ' −3.8 separates XY-FM and XY-FM Clus-
ters. Dot-dashed straight lines: studies from [24] (tilted) and
[25] (horizontal) (see text). We explore the metrological us-
ability of these phases, finding XY-FM and XY-FM cluster
phases especially convenient (see text).

of freedom [36]. To this aim, we consider a system of
N fermionic atoms in two spin states within the tUJ
model [24], correlated via nearest-neighbor coupling J
and on-site U , and in the presence of tunneling pro-
cesses t. We use Density-Matrix Renormalization Group
(DMRG) simulations to characterize the system quan-
tum phases and classify them by finding a quantitative
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correspondence between the QFI and the order parame-
ters characterizing the quantum fluid, conveying two cen-
tral messages. First, this idea acquires methodological
significance, since QFI can be seen as an order param-
eter. Second, two particular ground states in a short-
range interacting system result especially promising for
metrological use, because of their QFI scaling with the
number of atoms N . These phases correspond to an XY-
ferromagnet and a cluster ordering, the latter being here
identified and quantitatively analyzed in the whole U -J
phase diagram. Exploiting this metrological usability re-
quires the devising of suited protocols [37], which we will
discuss along with possible experimental realizations.
The Fermionic tUJ model- We consider an ensemble
of fermions in two (real or pseudo)-spin states, moving
in a one-dimensional (1D) geometry in the presence of
a short-range interaction. We model the system as car-
tooned in top Fig. 1, according to the tUJ Hamiltonian:

H =
∑
i

[
−t(c†iσci+1σ+h.c.)+Uni↑ni↓+J(s+i s

−
i+1+h.c.)

]
.

(1)

Here, c
(†)
j,σ are destruction (creation) operators for

fermions with spin σ on site j, nj ≡
∑
σ c
†
jσcjσ is the

number operator, and s
+(−)
j ≡ c†j↑(↓)cj↓(↑) the spin rais-

ing (lowering) operators. The t-term mimics atomic mo-
tion via hopping. The U and J terms represent, respec-
tively, the contact and nearest-neighbor parts of a same
two-body interaction, from now on in |t| = 1 units.
We explore the quantum phases of the tUJ model by
resorting to a DMRG method [38–40], as described in
detail in the Supplemental Material [41], which includes
Refs. [42–48]. We probe different quantum correlation

functions 〈O†iOj〉, with Ok an operator acting on site k.
We have considered Spin Density Waves (SDW) corre-
lations with O = sx,y,z, Charge Density Waves (CDW)
with O = n, and superfluid pairing (SF) with O = c↑c↓.
As we focus on the connection between the system quan-
tum phases and their metrological usability, we only dis-
play results for ν = 1/4 filling, though results at ν = 1/2
are also discussed.
Quantum phases- The bottom Fig. 1 displays the sys-
tem quantum phases. We first discuss the phase diagram
for −∞ < U < +∞ and |J |-values below the solid thick-
est curves. Large and negative U favor a SF phase in 1D
sense with a large fraction of doubly-occupied sites [49],
while small J couplings are ineffective without opposite-
spins to pair. Moving towards U → 0, onsite pairs
progressively become disfavored, and hopping start to
dominate. As expected, this leads to CDW ordering for
J > 0 and SDWz for J < 0, U > 0, both character-
ized by a typical 2kF oscillation in the correlation func-
tions. Overall, the behavior around the origin is consis-
tent with a smooth merging into a Luttinger-Liquid (LL)
description. Larger and positive U values drive instead a

FIG. 2: Density profiles for J = −0.1U and different U values.
Top: typical profiles in the SF and CDW (left), SDW and
XY-FM phases (right). Friedel oscillations are present[41].
Bottom: Density profile for U = 60 with cluster formation.
Inset: same profile with J = 0.

dominance of antiferromagnetic (AFM)-like ordering in
the form of SDWx,y oscillating correlation functions for
J > 0. For J < 0, a positive and non-oscillatory power-
law behavior sets in, along with suppression of spin-z cor-
relations, while the spin-x, y expectation values on each
site are solid zeros. We call this XY-Ferromagnetic (XY-
FM) phase in 1D sense, the power-law decay being the
longest range ordering possible [49]. All this suggests the
many-body ground state to be fully symmetric in the xy
pseudospin plane, as dictated by the symmetry of the
Hamiltonian. The SDWx,y and XY-FM phases can be
understood noticing that +J

∑
i(s

+
i s
−
i+1 + h.c.) can be

cast as ∼ sxi s
x
i+1 + syi s

y
i+1, so that spin-exchange cou-

pling favors spin (anti-)alignment in the x, y plane.
We remark that a similar tUJ model has been investi-
gated by Dziurzik, Japaridze et al. [24] in the context
of high-temperature superconductivity via bosonization
and DMRG techniques, exploring the J, U space at differ-
ent fillings. While we find good agreement on the phases
nature and boundaries discussed so far (tilted dot-dashed
lines in Fig. 1 [24]), our analysis provides qualitative and
quantitative evidence of a new phase. In this phase,
particles clusterize, i.e. form regions with unit density
surrounded by zero density. Inside the clusters, spins
are strongly aligned (FM) or antialigned (AFM) in their
x, y-components. In Fig. 1 these are the XY-FM and
XY-AFM cluster phases, emerging for J < 0 and J > 0,
respectively above and below a U -dependent threshold
Jc. We now investigate the nature of these phases, turn-
ing our attention to the density profiles displayed in Fig. 2
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for the illustrative value J/U = −0.1 [41].

While for U < 0 and U . 3 values (top panel),
the density profiles show the usual Friedel oscillations
around average density [41], for U & 38 we encounter
the typical situation depicted in the lower panel. The
system’s bulk ceases to be translationally invariant,
and fermions form clusters of singly occupied sites.
Simultaneously, very strong spin-x correlations arise
among particles inside clusters [41]. A similar simu-
lation for the Hubbard model with J = 0 shows no
trace of this phase (inset), leading us to infer that the
cluster phase be driven by the dominance of the local
nearest-neighbor (FM and AFM) xy coupling over the
delocalizing hopping term. We assess the robustness
of this phase by performing a number of runs against
variations of simulation parameters. Though clusters
positions and number are seen to change in sensible
manner, their qualitative behavior persists as detailed
in [41]. In essence, with our DMRG algorithm, single
clusters more likely form at relatively small system sizes
(L . 40), and moving clusters may merge under larger
numbers of finite-size algorithm iterations. We infer that
the variability of the clusters positions be due to the
vanishing energetic cost of moving around one of them
in the surrounding free space.
In fact, we found traces of this state in studies of the tJ
model performed via exact diagonalization [25], yielding
Jc = 3.22, and via DMRG, resulting in Jc ' 3.15 [50].
From our density profiles, we infer that the cluster
phase appears at Uc ' 38, i.e. - given J/U = −0.1
- Jc ' −3.8. We infer that this phase transition is
driven by the same physical mechanism as in [25], but
with a critical Jc modified by the onsite U . In fact,
their no-double occupancy setting can be viewed as our
U → +∞ limit, where we find |Jc| ' 3.8. For large
U < 0, the boundary is instead located on the lines
|J/U | ∼ ±0.85. As one would expect |J/U | = ±1, the
observed modified value could be due to super-exchange.
In the −1 < J/U < −0.85 gap, we observe peculiar clus-
ters characterized by double-occupancy at the density
edges, which we name hemmed clusters (HC) [41]. This
is not the case in the symmetric region with J/U > 0.
Quantum Fisher Information (QFI)- Having
characterized our quantum phases, we can now turn to
measure their degree of many-body entanglement via
the Quantum Fisher Information F , and test the sys-
tem’s metrological usability. The quantum Cramér-Rao
lower bound [14] on an estimator variance is given by
(∆θ)2 = 1/F [ρ, Ŝ]. The QFI depends in a complicated
way on both the system’s initial state and the trans-
formation performed by the physical phenomenon to
be measured, but it considerably simplifies for a pure
state undergoing a unitary transformation exp (iθS~a),
becoming F [ψ, Ŝ~a] = 4(∆S~a)2ψ [14]. Here S~a ≡ aαSα is a
linear combination of global (pseudo-)spin operators [14].
F [ψ, Ŝ~a] fixes a criterion for evaluating the metrological

FIG. 3: Quantum fermionic correlated phases and metrolog-
ical usability in a single-shot phase diagram. The QFI (red)
vs. U gets along the order parameters CCx(0) (green) and∑
i(∆n

2)i (blue) describing the building up of XY-FM and
Cluster correlations, respectively (see text).

usability of a quantum state, here the ground state of
the many-fermion system. It is known that for a N-body
uncorrelated product state, F ∼ N corresponds to the
shot-noise limit [14]. For possibly good metrological
usability then, the QFI needs to scale as Nγ <,with
1 < γ < 2 limited by the Heisenberg principle [13].
Results on QFI- We now quantify these expectations

by computing the QFI across the phase diagram and
comparing it with the quantum phases order parameters.
In all computations we select the spin axis which offers
the largest QFI value from the the angular momentum
covariance matrix Covab =

∑
i,j〈sai sbj〉 [15], always

obtaining the x-axis as non-granted outcome. A simple
reasoning would lead us to infer that the QFI on SDW
or SF states would return a tiny value as compared even
to shot-noise QFI∼ N . In fact, the oscillating spin-x
correlations between different sites would add up to zero
in the SDW and vanish for each doubly occupied site of
the SF state. This view corresponds to our numerical
findings. The QFI results to be large only in the
XY-FM and XY-FM cluster phases. For a quantitative
comparison, we now define the corresponding order
parameters. For the XY-FM phase, this is taken to
be the area CCx(0) of the normalized k = 0 peak in
the Fourier transform of the spin-x correlation function
Cx(i − j). For the Clusters phase, it is the normalized
density variance L−1

∑
i(∆n

2)i.
Since we are originally interested in systems where J
and U are effectively caused by the same term, we run
simulations at fixed J/U while varying U to cross all
possible phases. The results for the QFI (red points and
curve), XY-FM (green points and curve), and Cluster
(blue points and curve) order parameters are collected
within one single graph in Fig. 3, one central result
of the present work. We see that the QFI shows a
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FIG. 4: QFI density QFI/N (N number of atoms) vs. U for
ν = 1/4 (red) and 1/2 (blue), and different J/U (see legend).
Table: exponents fitted from QFI= kNγ for ν = 1/2, 1/4 at
J/U = −0.1. U values are chosen to correspond to the QFI
maximum in the XY-FM phase (U = 11) and in the large-U
limit for the Cluster phase (U = 60), at ν = 1/4. Inset figure:
example of QFI scaling for ν = 1/4, U = 60, and J/U = −0.1.

steep change in correspondence of the quantum phase
transition to spin-x ordering, the QFI and CCx(0)
curves getting quite closely along with varying U . In
fact, one may use the QFI to infer the occurrence of
the two quantum phase transitions around U ∼ 4 and
U ∼ 38. The correspondence between QFI and order
parameters is quantitative for the XY-FM phase. The
fact that particles in different clusters are uncorrelated
makes the comparison qualitative for the Cluster phases
at this stage. A quantitative treatment is recovered via
the QFI scaling analysis below, generalizing this central
message to different J/U values in the phase diagram.
In particular, we now study the dependence of QFI on
J/U and filling, and assess the degree of metrological
usability from the QFI scaling with the particle number
N = 2νL [51]. We display in Fig. 4 the QFI density
QFI/N at two commensurate fillings, 1/4 (red) and 1/2
(blue). As anticipated, the QFI vanishes for U < 0
and J/U = +0.8, where XY-FM and cluster phases are
absent. At ν = 1/2, the QFI density is larger and, unlike
ν = 1/4, smooth since the whole system is in the form
of a single cluster. For both fillings, larger (negative)
values of J favor cluster formation and steeper QFI rise.
We study the N -scaling with special care at ν = 1/4,
where several uncorrelated clusters may form at large
U > 0. Thus, we keep relatively small system sizes
(L < 40) to have one single cluster[41]. For both fillings,
we fit the QFI dependence on N with QFI= kNγ , as
illustrated in the inset. The table reports γ for U = 11,
corresponding to the QFI maximum in the XY-FM
phase, and the large-U limit for the Cluster phase at

ν = 1/4. We see that half-filling shows better scaling
outside the cluster region. Inside it, the scalings at
ν = 1/4 and 1/2 are compatible within error.
Metrology implementations. The QFI scaling is
promising, but a real use of these reduced-quantum un-
certainty states injected in an interferometric sequence
requires suited protocols. The XY-FM and Cluster
phases represent non-Gaussian states with a Wigner
distribution located around the equator in the Bloch
sphere [41] and 〈Sx,y,x〉 = 0, so that the signal cannot be
encoded in a mean spin direction. This unconventional
situation reminds the one experimentally investigated
in [52] for Twin-Fock states with the method proposed
in [53]. Adopting a similar strategy, one might operate
a rotation by angle θ about an axis in the xy-plane, and
consider the lower bound F ≥ |d〈S2

z 〉/dθ|2/(∆S2
z )2 for

the classical Fisher information, leading to the uncer-
tainty ∆θ ≥ (

√
Fn) after n measurements. In essence,

the signal would be related to the second moment of Sz
instead than the first one, and the noise to the fourth
instead than the second. Eventually, optimization with
respect to θ is to be performed. Signal extraction and
optimization can be operated after sampling the full
probability distribution or the second and fourth Sz
momenta [54] in a time-dependent simulation of the
interferometric sequence.
Conclusions- Our study conveys two unforeseen mes-
sages. First, short-range interactions are able to build
metrologically useful entanglement in a many-fermions
system. This is demonstrated by a large degree of
Quantum Fisher Information, accompanied by inter-
esting scaling with the number of particles. The best
performing phase is indeed the cluster one, driven by the
J coupling, which in our study models the short-range
interactions. Second, our results imply that the QFI
represent a powerful tool to characterize the phases of
the quantum fluid, acting as an order parameter.
Implementations in ultracold gases platforms may in
include currently realized systems of dipolar fermions
in optical lattices [55] and suitably engineered versions
of Fermi-Hubbard setups [56], in both cases after
further reduction of dimensionality to 1D. Finally, a
microscopic origin of this tUJ model can be provided by
a photon-mediated effective interaction among fermions
in an optical cavity [57], leading to a spin-squeezing-like
Hamiltonian [15]. Multimode optical cavities [58] may
bring in the short-range environment, though a realistic
probe requires detailed modeling to include unavoidable
dissipation processes [59]. Single-particle decoherence
could be suppressed in the presence of a spin gap,
as in the cluster phase [24]. While one might expect
superradiance-enhanced decoherence still be an issue,
one might ask whether delocalization in (1) and the
xy-symmetric structure of the ground state might be
exploited to limit the effect. We are currently working
along this direction, via an actual time-dependent
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simulation of the open system [59].
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Lett. 120, 033601 (2018).
[37] S. P. Nolan, S. S. Szigeti, and S. A. Haine, Phys. Rev.

Lett. 119, 193601 (2017).
[38] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
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